Messenger No. 161 (September 2015)
The Organisation
2-5 (PDF)
Astronomy in Poland
ADS BibCode:
2015Msngr.161....2S
Section:
The Organisation
Author(s)/Affiliation(s):
Sarna, M.; Stępień, K.
AA(Nicolaus Copernicus Astronomical Centre, Polish Academy of Sciences, Warsaw, Poland) AB(Warsaw University Observatory, Poland)
Abstract:
Polish post-war astronomy was built virtually from nothing. Currently, about 250 astronomers are employed in seven academic institutes and a few smaller units across Poland. Broad areas of astrophysics are covered and the level of astronomical research in Poland is higher than the world average. Joining ESO has created an atmosphere that is conducive to further improvements in the quality of Polish research, and it marks an important step towards the full integration of Polish astronomers into the international scientific community.
6-14 (PDF)
Shaping ESO2020+ Together: Feedback from the Community Poll
ADS BibCode:
2015Msngr.161....6P
Section:
The Organisation
Author(s)/Affiliation(s):
Primas, F.; Ivison, R.; Berger, J.-P.; Caselli, P.; De Gregorio-Monsalvo, I.; Herrero, A. A.; Knudsen, K. K.; Leibundgut, B.; Moitinho, A.; Saviane, I.; Spyromilio, J.; Testi, L.; Vennes, S.
AA(ESO) AB(ESO) AC(ESO) AD(Max-Planck-Institut für extraterrestrische Physik, Garching, Germany) AE(ESO) AF(Instituto de Fisica de Cantabria, CSIC-UC, Santander, Spain) AG(Department of Earth and Space Sciences, Chalmers University of Technology, Onsala Space Observatory, Sweden) AH(ESO) AI(SIM-CENTRA, Deptamento Fisica FCUL, Campo Grande, Lisbon, Portugal) AJ(ESO) AK(ESO) AL(ESO) AM(Astronomical Institute, Czech Academy of Sciences, Czech Republic)
Abstract:
A thorough evaluation and prioritisation of the ESO science programme into the 2020+ timeframe took place under the auspices of a working group, comprising astronomers drawn from ESO’s advisory structure and from within ESO. This group reported to ESO’s Scientific Technical Committee, and to ESO Council, concluding the exercise with the publication of a report, “Science Priorities at ESO”. A community poll and a dedicated workshop, held in January 2015, formed part of the information gathering process. The community poll was designed to probe the demographics of the user community, its scientific interests, use of observing facilities and plans for use of future telescopes and instruments, its views on types of observing programmes and on the provision of data processing and archiving. A total of 1775 full responses to the poll were received and an analysis of the results is presented here. Foremost is the importance of regular observing programmes on all ESO observing facilities, in addition to Large Programmes and Public Surveys. There was also a strong community requirement for ESO to process and archive data obtained at ESO facilities. Other aspects, especially those related to future facilities, are more challenging to interpret because of biases related to the distribution of science expertise and favoured wavelength regime amongst the targeted audience. The results of the poll formed a fundamental component of the report and pro-vide useful data to guide the evolution of ESO’s science programme.
Astronomical Science
17-19 (PDF)
HARPS Observes the Earth Transiting the Sun — A Method to Study Exoplanet Atmospheres Using Precision Spectroscopy on Large Ground-based Telescopes
ADS BibCode:
2015Msngr.161...17Y
Section:
Astronomical Science
Author(s)/Affiliation(s):
Yan, F.; Fosbury, R.; Petr-Gotzens, M.; Pallé, E.; Zhao, G.
AA(ESO; National Astronomical Observatories, Chinese Academy of Sciences, Beijing, China) AB(ESO) AC(ESO) AD(Instituto de Astrofísica de Canarias, La Laguna, Tenerife, Spain) AE(National Astronomical Observatories, Chinese Academy of Sciences, Beijing, China)
Abstract:
Exoplanetary transits offer the opportunity to measure the transmission of long, tangential pathlengths through their atmospheres. Since the fraction of the observed stellar light taking these paths is very small, transit photometric and spectrophotometric measurements of light curves require very high levels of measurement stability, favouring the use of intrinsically stable space telescopes. By studying the Rossiter–McLaughlin effect on the radial velocity of the transited star, pure, high-precision radial velocity measurements can be used to estimate the changes in planetary atmospheric transmission with wavelength: a promising method for future studies of small planets with very large ground-based telescopes since it removes the requirement for extreme photometric stability. This article describes a successful feasibility experiment using the HARPS instrument to measure reflected moonlight during the penumbral phases of a Lunar eclipse, effectively providing an observation of an Earth transit.
References:
Arnold, L. et al. 2014, A&A, 564, A58; McLaughlin, D. B. 1924, ApJ, 60, 22 Molaro, P. et al. 2013, MNRAS, 429, L79; Pallé, E. et al. 2009, Nature, 459, 814 Rossiter, R. A. 1924, ApJ, 60, 15 Snellen, I. A. G. 2004, MNRAS, 353, L1 Vidal-Madjar, A. et al. 2010, A&A, 523, A57 Yan, F. et al. 2015a, ApJ Letters, 806, L23; Yan, F. et al. 2015b, International Journal of Astrobiology, 14, 255
20-23 (PDF)
Simultaneous HARPS and HARPS-N Observations of the Earth Transit of 2014 as Seen from Jupiter: Detection of an Inverse Rossiter–McLaughlin Effect
ADS BibCode:
2015Msngr.161...20M
Section:
Astronomical Science
Author(s)/Affiliation(s):
Molaro, P.; Monaco, L.; Barbieri, M.; Zaggia, S.; Lovis, C.
AA(INAF – Osservatorio Astronomico di Trieste, Italy) AB(Departamento de Ciencias Fisicas, Universidad Andres Bello, Santiago, Chile) AC(Departamento de Fisica, Universidad de Atacama, Copiapo, Chile) AD(INAF – Osservatorio Astronomico di Padova, Italy) AE(Geneva Observatory, University of Geneva, Versoix, Switzerland)
Abstract:
Although there will not be another transit of Venus visible from the Earth until 2117, transits of other planets, including Earth, will be visible from other planets. We describe high resolution spectroscopic observations of the transit of Earth visible from Jupiter in January 2014 made with the HARPS North and South spectrographs. A Rossiter–McLaughlin effect was observed but with reverse sign and ~ 200 times larger. The result, presented in Molaro et al. (2015), was not at all what was expected and the explanation eventually led to the discovery of a new effect, a sort of inverse Rossiter–McLaughlin effect that has never been observed before.
References:
Gimenez, A. 2006, ApJ, 650, 408; McLaughlin, D. B. 1924, ApJ, 60, 22; Meeus, J. 1989, Transits (Richmond, Virginia: Willmann-Bell) Molaro, P. et al. 2013, MNRAS, 429, L79; Molaro, P. et al. 2013, The Messenger, 153, 22; Molaro, P. & Monai, S. 2012, A&A, 544, 125; Molaro, P. et al. 2015, MNRAS, 453, 1684; Rossiter, R. A. 1924, ApJ, 60, 15
24-27 (PDF)
RAFT I: Discovery of New Planetary Candidates and Updated Orbits from Archival FEROS Spectra
ADS BibCode:
2015Msngr.161...24S
Section:
Astronomical Science
Author(s)/Affiliation(s):
Soto, M. G.; Jenkins, J. S.; Jones, M. I.
AA(Departamento de Astronomía, Universidad de Chile, Santiago, Chile) AB(Departamento de Astronomía, Universidad de Chile, Santiago, Chile) AC(Department of Electrical Engineering and Center of Astro-Engineering UC, Pontifica Universidad Católica de Chile, Santiago, Chile)
Abstract:
The first results of the Reanalysis of Archival FEROS specTra (RAFT) project are presented. We have analysed FEROS data for five stars with proposed planetary companions in order to test the reliability of the solutions with our new methodology. For HD 11977, HD 47536 and HD 110014 we confirm the presence of one orbiting companion. We reject the presence of a second companion around HD 47536, as well as the planets detected around HD 70573 and HD 122430. Finally, we propose the existence of a new second planetary companion around the giant star HD 110014.
References:
de Medeiros, J. R. et al. 2009, A&A, 504, 617; Dumusque, X., Boisse, I. & Santos, N. C. 2014, ApJ, 796, 132; Jenkins, J. S. & Tuomi, M. 2014, ApJ, 794, 110; Jones, M. I. et al. 2014, A&A, 566, A113; Mayor, M. et al. 2003, The Messenger, 114, 20; Müller, A. et al. 2013, A&A, 556, A3; Pojmanski, G. 1997, Acta Astron., 47, 467; Queloz, D. et al. 2000, A&A, 354, 99; Reffert, S. et al. 2015, A&A, 574, A116; Setiawan, J. 2003, in Proc. Conf. on Towards Other Earths: DARWIN/TPF and the Search for Extrasolar Terrestrial Planets, 22–25; April 2003, ed. Fridlund, M., Henning, T. & Lacoste, H., Heidelberg, Germany Setiawan, J. et al. 2003, A&A, 398, L19; Setiawan, J. et al. 2005, A&A, 437, L31; Setiawan, J. et al. 2007, ApJ, 660, L145; Setiawan, J. et al. 2008, in Proc. ESO/Lisbon/Aveiro Conference, 11–15; September 2006, ed. Santos, N. C. et al., Garching, Germany, 325; Soto, M. G., Jenkins, J. S. & Jones, M. I. 2015, MNRAS, 451, 3131; Tokovinin, A. et al. 2013, PASP, 125, 1336
28-31 (PDF)
Using Solar Twins to Explore the Planet–Star Connection with Unparallelled Precision
ADS BibCode:
2015Msngr.161...28M
Section:
Astronomical Science
Author(s)/Affiliation(s):
Meléndez, J.; Bean, J. L.; Bedell, M.; Ramírez, I.; Asplund, M.; Dreizler, S.; Alves-Brito, A.; Spina, L.; Casagrande, L.; Monroe, T.; Maia, M. T.; Freitas, F.
AA(Departamento de Astronomia, Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, Brazil) AB(Department of Astronomy and Astrophysics, University of Chicago, USA) AC(Department of Astronomy and Astrophysics, University of Chicago, USA) AD(McDonald Observatory and Department of Astronomy, University of Texas at Austin, USA) AE(Research School of Astronomy and Astrophysics, The Australian National University, Australia) AF(Institut für Astrophysik, Universität Göttingen, Germany) AG(Instituto de Fisica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil) AH(Departamento de Astronomia, Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, Brazil) AI(Research School of Astronomy and Astrophysics, The Australian National University, Australia) AJ(Space Telescope Science Institute, Baltimore, USA) AK(Departamento de Astronomia, Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, Brazil) AL(Departamento de Astronomia, Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, Brazil)
Abstract:
This year marks the 20th anniversary of the first definitive detection of an exoplanet orbiting a Sun-like star by Mayor and Queloz (1995). Almost 2000 exoplanets have been discovered since this breakthrough, but many fundamental questions remain open despite the enormous progress: How common are analogues of the Solar System? How do planets form and evolve? What is the relationship between stars and planets? We are observing stars that are near-perfect matches to the Sun to provide new insights into the above questions, thus exploring the planet–star connection with unprecedented precision.
References:
Asplund, M. 2005, ARA&A, 43, 481; Batygin, K. & Laughlin, G. 2015, PNAS, 112, 4214; Bedell, M. et al. 2014, ApJ, 795, 23; Bedell, M. et al. 2015, A&A, 581, A34; Biazzo, K. et al. 2015, A&A, in press, arXiv1506.01614; Chambers, J. E. 2010, ApJ, 724, 92; Ghezzi, L. et al. 2010, ApJ, 720, 1290; Gonzalez, G. 1997, MNRAS, 285, 403; Izidoro, A. et al. 2015, ApJ, 800, L22; Kiselman, D. et al. 2011, A&A, 535, 14; Laughlin, G. & Adams, F. C. 1997, ApJ, 491, L51; Mayor, M. & Queloz, D. 1995, Nature, 378, 355; Meléndez, J. et al. 2009, ApJ, 704, L66; Meléndez, J. et al. 2014, ApJ, 791, 14; Monroe, T. R. et al. 2013, ApJ, 714, L32; Nissen, P. 2015, A&A, 579, A52; Ramírez, I., Meléndez, J. & Asplund, M. 2009, A&A, 508, L17; Ramírez, I. et al. 2011, ApJ, 740, 76; Ramírez, I. et al. 2014, A&A, 572, A48; Ramírez, I. et al. 2015, ApJ, 808, 13; Sousa, S. G. et al. 2008, A&A, 487, 373; Spina, L. et al. 2014, A&A, 567, A55; Teske, J. K. et al. 2015, ApJ, 801, L10; Tucci Maia, M., Meléndez, J. & Ramírez, I. 2014, ApJ, 790, L25; Tucci Maia, M. et al. 2015, A&A, 576, L10; Walsh, K. J. et al. 2011, Nature, 475, 206
32-36 (PDF)
Red Supergiants as Cosmic Abundance Probes
ADS BibCode:
2015Msngr.161...32D
Section:
Astronomical Science
Author(s)/Affiliation(s):
Davies, B.; Kudritzki, R.-P.; Bergemann, M.; Evans, C.; Gazak, Z.; Lardo, C.; Patrick, L.; Plez, B.; Bastian, N.
AA(Astrophysics Research Institute, Liverpool John Moores University, United Kingdom) AB(Institute for Astronomy, University of Hawaii, USA; Munich University Observatory, Germany) AC(Max Planck Institute for Astronomy, Garching, Germany) AD(UK Astronomy Technology Centre (UKATC), Edinburgh, Scotland) AE(Institute for Astronomy, University of Hawaii, USA) AF(Astrophysics Research Institute, Liverpool John Moores University, United Kingdom) AG(Institute for Astronomy, University of Edinburgh, Scotland) AH(University of Montpellier, France) AI(Astrophysics Research Institute, Liverpool John Moores University, United Kingdom)
Abstract:
By studying a galaxy’s present-day chemical abundances, we are effectively looking at its star-forming history. Cosmological simulations of galaxy evolution make predictions about the relative metal contents of galaxies as a function of their stellar mass, a trend known as the mass–metallicity relation. These predictions can be tested with observations of nearby galaxies. However, providing reliable, accurate abundance measurements at extragalactic distances is extremely challenging. In this project, we have developed a technique to extract abundance information from individual red supergiant stars at megaparsec distances. We are currently exploiting this technique using the unique capabilities of KMOS on the VLT.
References:
Bergemann, M. et al. 2012, ApJ, 751, 156; Bergemann, M. et al. 2013, ApJ, 764, 115; Bergemann, M. et al. 2015, ApJ, 804, 113; Bresolin, F. et al. 2009, ApJ, 700, 309; Davies, B., Kudritzki, R.-P. & Figer, D. F. 2010, MNRAS, 407, 1203; Davies, B. et al. 2015, ApJ, 806, 21; Evans, C. et al. 2011, A&A, 527, A50; Gazak, J. Z. et al. 2014a, ApJ, 788, 58; Gazak, J. Z. et al. 2014b, ApJ, 787, 142; Gazak, J. Z. et al. 2015, ApJ, 805, 2; Gustafsson, B. et al. 2008, A&A, 486, 951; Kewley, L. J. & Ellison, S. L. 2008, ApJ, 681, 1183; Kudritzki, R.-P. et al. 2014, ApJ, 788, 58; Kudritzki, R.-P. et al. 2008, ApJ, 681, 269; Lequeux, J. et al. 1979, A&A, 80, 155; Patrick, L. R. et al. 2015, ApJ, 803, 14; Schaye, J. et al. 2015, MNRAS, 446, 521
Astronomical News
38-42 (PDF)
Report on the ESO Workshop ''Satellites and Streams in Santiago''
ADS BibCode:
2015Msngr.161...38K
Section:
Astronomical News
Author(s)/Affiliation(s):
Küpper, A. H. W.; Mieske, S.
AA(Department of Astronomy, Columbia University, New York, USA) AB(ESO)
Abstract:
Galactic satellites and tidal streams are arguably the two most direct imprints of hierarchical structure formation in the haloes of galaxies. At this ESO workshop we sought to create the big picture of the galactic accretion process, and shed light on the interplay between satellites and streams in the Milky Way, Andromeda and beyond. The Scientific Organising Committee prepared a well-balanced programme with 60 talks and 30 poster contributions, resulting in a meeting which was greatly enjoyed by the more than 110 participants at the venue, and worldwide via Twitter (#SSS15).
References:
Norris, M. et al. 2014, MNRAS, 443, 1151; Richardson, J. C. et al. 2011, ApJ, 732, 76
43-48 (PDF)
Report on the ESO Workshop ''Stellar End Products: The Low-mass – High-mass Connection''
ADS BibCode:
2015Msngr.161...43W
Section:
Astronomical News
Author(s)/Affiliation(s):
Walsh, J.; Humphreys, L.; Wittkowski, M.
AA(ESO) AB(ESO) AC(ESO)
Abstract:
There are many similarities in the mass-loss processes between evolved low-mass and high-mass stars and the workshop brought together observers and theoreticians to compare and contrast the asymptotic giant branch and red supergiant evolutionary phases. Asymmetric and collimated mass loss, bipolarity, binarity, stellar rotation and magnetic fields were among the key topics explored. Many results were displayed from state-of-the-art high spatial resolution facilities, such as ALMA and the VLTI. A summary of the workshop topics is presented.
References:
Aurière, M. et al. 2015, A&A, 574, A90; Cernicharo, J. et al. 2015, A&A, 575, 91; Decin, L. et al. 2015, A&A, 574, A5; Kastner, J. et al. 2012, AJ, 144, 58; Lebre, A. et al. 2014, A&A, 561, 85; Maercker, M. et al. 2012, Nature, 490, 232; Montargès, M. et al. 2014, A&A, 572, A17; Montargès, M. et al. 2015, A&A, 578, A77; Mosser, B. et al. 2014, A&A, 572, L5; Norris, B. et al. 2012, Nature, 484, 220; Santander-Garcia, M. et al. 2015, Nature, 519, 7541; Vlemmings, W. H. T. et al. 2015, A&A, 577, 4; Williams, P. M. et al. 2009, MNRAS, 395, 1749
49-51 (PDF)
Report on the Chilean Exoplanet Meeting
ADS BibCode:
2015Msngr.161...49S
Section:
Astronomical News
Author(s)/Affiliation(s):
Sedaghati, E.; Boffin, H.
AA(ESO) AB(ESO)
Abstract:
The contribution of the Chilean scientific community to the field of exoplanetary research has been crucial in advancing our understanding of this relatively new discipline of astronomy. In order to highlight these achievements, present current areas of research and instrumentation development, and foster further collaborations, a one-day exoplanet focus meeting was organised at ESO Vitacura. A summary of the meeting is presented.
References:
Boffin, H. M. J. et al. 2015, The Messenger, 159, 6; Käufl, H.-U. et al. 2015, The Messenger, 159, 15; Martins, J. et al. 2015, A&A, 576, A134; Sedaghati, E. et al. 2015, A&A, 576, L11; Soto, M. G., Jenkins, J. S. & Jones, M. I. 2015, MNRAS, 451, 3131; Tala, M. et al. 2014, Proc. SPIE, 914789; Vigan, A. et al. 2015, A&A, submitted
51-53 (PDF)
Fellows at ESO
ADS BibCode:
2015Msngr.161...51.
Section:
Astronomical News
Author(s)/Affiliation(s):
Guzman-Ramirez L.; Aladro R.
AA(ESO) AB(ESO)
54-54 (PDF)
Personnel Movements
55-55 (PDF)
ESO Studentship Programme 2015/2016 — Second Call