Messenger No. 171 (March 2018)

« Back to The Messenger home

Telescopes and Instrumentation

2-7 (PDF)
S. D’Odorico
40+ Years of Instrumentation for the La Silla Paranal Observatory

DOI:
10.18727/0722-6691/5061
ADS BibCode:
2018Msngr.171....2D
Section:
Telescopes and Instrumentation
Author(s)/Affiliation(s):
D’Odorico, S.
AA(ESO)
Abstract:
As ESO Period 100 comes to a close, I look back at the development of ESO’s instrumentation programme over more than 40 years. Instrumentation and detector activities were initially started by a small group of designers, engineers, technicians and astronomers while ESO was still at CERN in Geneva in the late 1970s. They have since led to the development of a successful suite of optical and infrared instruments for the La Silla Paranal Observatory, as testified by the continuous growth in the number of proposals for observing time and in the publications based on data from ESO telescopes. The instrumentation programme evolved significantly with the VLT and most instruments were developed by national institutes in close cooperation with ESO. This policy was a cornerstone of the VLT programme from the beginning and a key to its success.
References:
De Zeeuw, T. et al. 2017, The Messenger, 169, 64; D’Odorico, S., Moorwood, A. & Beckers, J. 1991, Journal of Optics, 22, 85; Leibundgut, B. et al. 2017, The Messenger, 169, 11; Madsen, C. 2012, The Jewel on the Mountaintop, (Weinheim: Wiley-VCH) Patat, F. et al. 2017, The Messenger, 169, 5; Woltjer, L. 2006, Europe’s Quest for the Universe, (EDP Sciences)
8-13 (PDF)
O.R. Hainaut et al.
End-to-End Operations in the ELT Era

DOI:
10.18727/0722-6691/5062
ADS BibCode:
2018Msngr.171....8H
Section:
Telescopes and Instrumentation
Author(s)/Affiliation(s):
Hainaut, O.R.; Bierwirth, T.; Brillant, S.; Mieske, S.; Patat, F.; Rejkuba, M.; Romaniello, M.; Sterzik, M.
AA(ESO) AB(ESO) AC(ESO) AD(ESO) AE(ESO) AF(ESO) AG(ESO) AH(ESO)
Abstract:
The Data Flow System is the infrastructure on which Very Large Telescope (VLT) observations are performed at the Observatory, before and after the observations themselves take place. Since its original conception in the late 1990s, it has evolved to accommodate new observing modes and new instruments on La Silla and Paranal. Several updates and upgrades are needed to overcome its obsolescence and to integrate requirements from the new instruments from the community and, of course, from ESO’s Extremely Large Telescope (ELT), which will be integrated into Paranal’s operations. We describe the end-to-end operations and the resulting roadmap guiding their further development.
References:
Arnaboldi, M. et al. 2014, The Messenger, 156, 24; de Zeeuw, T. 2016, The Messenger, 166, 2; Patat, F. et al. 2017, The Messenger, 170, 51; Primas, F. et al. 2014, The Messenger, 158, 8; Primas, F. et al. 2015, The Messenger, 161, 6; Quinn, P. 1996, The Messenger, 84, 30; Romaniello, M. et al. 2016, The Messenger, 163, 5; Sterzik, M. et al. 2015, The Messenger, 162, 2
14-19 (PDF)
A. Mérand
The VLTI Roadmap

DOI:
10.18727/0722-6691/5063
ADS BibCode:
2018Msngr.171...14M
Section:
Telescopes and Instrumentation
Author(s)/Affiliation(s):
Mérand, A.
AA(ESO)
Abstract:
ESO’s Very Large Telescope Interferometer (VLTI) was a unique facility when it was conceived more than 30 years ago, and it remains competitive today in the field of milli-arcsecond angular resolution astronomy. Over the past decade, while the VLTI matured into an operationally efficient facility, it became limited by its first-generation instruments. As the second generation of VLTI instrumentation achieves first light, further developments for this unique facility are being planned and are described here.
References:
Chiavassa, A. et al. 2010, A&A, 511A, 51C; Gallenne, A. et al. 2015, A&A, 579A, 68G; Gonté, F. et al. 2016, SPIE, 9907, 1ZG; GRAVITY Collaboration 2017a, A&A, 602, A94; GRAVITY Collaboration 2017b, The Messenger, 170, 10; GRAVITY Collaboration 2017c, A&A, 608, 78; Höfner, S. & Olofsson, H. 2018, A&ARv, 26, 1; Hönig, S. 2016, AASL, 439, 95; Ilee, J. D. et al. 2014, MNRAS, 445, 3723; Kervella, P. et al. 2017, The Messenger, 167, 20; Lamberts, A. et al. 2017, MNRAS, 468, 2655L; Lazareff, B. et al. 2017, A&A, 599A, 85L; Lopez, B. et al. 2014, The Messenger, 157, 5; Matter, A. et al. 2016, SPIE, 9907, 0AM; Petrucci, P.-O. et al. 2017, A&A, 602L, 11G; Pribulla, T. et al. 2011, A&A, 528A, 21; Rakshit, S. 2015, MNRAS, 447, 2420R; Sana, H. et al. 2014, ApJS, 215, 15S; Stee, P. et al. 2017, arxiv1703.02395; Testi, L. et al. 2014, Protostars and Planets VI, ed. Beuther, H., Klessen, R., Dullemond, C. & Henning, T., (Tucson: University Arizona Press), 339; Tristram, K. R. W. et al. 2014, A&A, 563, 82; van Boekel, R. et al. 2004, Nature, 432, 479V; van der Plas, G. et al. 2014, A&A, 574, 75; Waisberg, I. et al. 2017, ApJ, 844, 72W; Wittkowski, M. et al. 2004, A&A, 418, 39; Woillez, J. et al. 2016, SPIE, 9907, 06W; Weigelt, G. et al. 2012, A&A, 541, L9; Weigelt, G. et al. 2016, A&A, 594A, 106
20-23 (PDF)
M. Cirasuolo et al.
The ELT in 2017: The Year of the Primary Mirror

DOI:
10.18727/0722-6691/5064
ADS BibCode:
2018Msngr.171...20C
Section:
Telescopes and Instrumentation
Author(s)/Affiliation(s):
Cirasuolo, M.; Tamai, R.; Cayrel, M.; Koehler, B.; Biancat Marchet, F.; González, J.C.; Dimmler, M.; Tuti, M.; & the ELT team
AA(ESO) AB(ESO) AC(ESO) AD(ESO) AE(ESO) AF(ESO) AG(ESO) AH(ESO) AI(ESO)
Abstract:
The Extremely Large Telescope (ELT) is at the core of ESO’s vision to deliver the largest optical and infrared telescope in the world. With its unrivalled sensitivity and angular resolution the ELT will transform our view of the Universe: from exoplanets to resolved stellar populations, from galaxy evolution to cosmology and fundamental physics. This article focuses on one of the most challenging aspects of the entire programme, the 39-metre primary mirror (M1). 2017 was a particularly intense year for M1, the main highlight being the approval by ESO’s Council to proceed with construction of the entire mirror. In addition, several contracts have been placed to ensure that the giant primary mirror will be operational at first light.

Astronomical Science

25-30 (PDF)
T.S. Bastian et al.
Exploring the Sun with ALMA

DOI:
10.18727/0722-6691/5065
ADS BibCode:
2018Msngr.171...25B
Section:
Astronomical Science
Author(s)/Affiliation(s):
Bastian, T.S.; Bárta, M.; Brajša, R.; Chen, B.; Pontieu, B.D.; Gary, D.E.; Fleishman, G.D.; Hales, A.S.; Iwai, K.; Hudson, H.; Kim, S.; Kobelski, A.; Loukitcheva, M.; Shimojo, M.; Skokić, I.; Wedemeyer, S.; White, S.M.; Yan, Y.
AA(National Radio Astronomy Observatory, Charlottesville, USA) AB(Astronomical Institute, Czech Academy of Sciences, Ondřejov, Czech Republic) AC(Hvar Observatory, Faculty of Geodesy, University of Zagreb, Croatia) AD(Center for Solar-Terrestrial Research, New Jersey Institute of Technology, Newark, USA) AE(Lockheed Martin Solar & Astrophysics Lab, Palo Alto, USA; Rosseland Centre for Solar Physics, University of Oslo, Norway) AF(Center for Solar-Terrestrial Research, New Jersey Institute of Technology, Newark, USA) AG(Center for Solar-Terrestrial Research, New Jersey Institute of Technology, Newark, USA) AH(National Radio Astronomy Observatory, Charlottesville, USA; Joint ALMA Observatory (JAO), Santiago, Chile) AI(Institute for Space-Earth Environmental Research, Nagoya University, Japan) AJ(School of Physics and Astronomy, University of Glasgow, Scotland, UK; Space Sciences Laboratory, University of California, Berkeley, USA) AK(Korea Astronomy and Space Science Institute, Daejeon, Republic of Korea; University of Science and Technology, Daejeon, Republic of Korea) AL(Department of Physics and Astronomy, West Virginia University, Morgantown, USA) AM(Center for Solar-Terrestrial Research, New Jersey Institute of Technology, Newark, USA; Max-Planck-Institut für Sonnensystemforschung, Göttingen, Germany; Astronomical Institute, St. Petersburg University, Russia) AO(National Astronomical Observatory of Japan (NAOJ), Tokyo, Japan; Department of Astronomical Science, The Graduate University for Advanced Studies (SOKENDAI), Tokyo, Japan) AP(Astronomical Institute, Czech Academy of Sciences, Ondřejov, Czech Republic; Hvar Observatory, Faculty of Geodesy, University of Zagreb, Croatia) AQ(Rosseland Centre for Solar Physics, University of Oslo, Norway) AR(Space Vehicles Directorate, Air Force Research Laboratory, Albuquerque, USA) AS(National Astronomical Observatories, Chinese Academy of Sciences, Beijing, China)
Abstract:
The Atacama Large Millimeter/submillimeter Array (ALMA) Observatory opens a new window onto the Universe. The ability to perform continuum imaging and spectroscopy of astrophysical phenomena at millimetre and submillimetre wavelengths with unprecedented sensitivity opens up new avenues for the study of cosmology and the evolution of galaxies, the formation of stars and planets, and astrochemistry. ALMA also allows fundamentally new observations to be made of objects much closer to home, including the Sun. The Sun has long served as a touchstone for our understanding of astrophysical processes, from the nature of stellar interiors, to magnetic dynamos, non-radiative heating, stellar mass loss, and energetic phenomena such as solar flares. ALMA offers new insights into all of these processes.
References:
Alissandrakis, C. E. et al. 2017, A&A, 605, A78; Bastian, T. S. et al. 2017, ApJ, 845, L19; Brajša, R. et al. 2018, A&A, accepted De Pontieu, B. et al. 2014, Sol. Phys., 289, 2733; Clark, T. A., Naylor, D. A. & Davis, G. R. 2000a, A&A, 357, 757; Clark, T. A., Naylor, D. A. & Davis, G. R. 2000b, A&A, 361, 60; Heinzel, P. et al. 2015, Sol. Phys., 290, 1981; Iwai, K. et al. 2017, ApJ, 841, L20; Kaufmann, P. et al. 2004, ApJ, 603, 121; Kosugi, T. et al. 2007, Sol. Phys., 243, 3; Krucker, S. et al. 2013, A&ARv, 21, 58; Loukitcheva, M. et al. 2017b, ApJ, 850, 35; Loukitcheva, M. et al. 2017a, A&A, 601, A43; Phillips, N. et al. 2015, Revolution in Astronomy with ALMA: The 3rd Year, 499, 347; Shimojo, M. et al. 2017a, Sol. Phys., 292, 87; Shimojo, M. et al. 2017b, ApJ, 841, L5; Wedemeyer, S. et al. 2015, Advances in Space Research, 56, 2679; Wedemeyer, S. 2016, The Messenger, 163, 15; Wedemeyer, S. et al. 2016, SSRv, 200, 1; White, S. M. et al. 2017, Sol. Phys., 292, 88; Yagoubov, P. A. 2013, 38th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), 1, DOI: 10.1109/IRMMW- THz.2013.6665775
31-36 (PDF)
J. Cami et al.
The ESO Diffuse Interstellar Band Large Exploration Survey (EDIBLES)

DOI:
10.18727/0722-6691/5066
ADS BibCode:
2018Msngr.171...31C
Section:
Astronomical Science
Author(s)/Affiliation(s):
Cami, J.; Cox, N.L.; Farhang, A.; Smoker, J.; Elyajouri, M.; Lallement, R.; Bacalla, X.; Bhatt, N.H.; Bron, E.; Cordiner, M.A.; de Koter, A.; Ehrenfreund, P.; Evans, C.; Foing, B.H.; Javadi, A.; Joblin, C.; Kaper, L.; Khosroshahi, H.G.; Laverick, M.; Le Petit, F.; Linnartz, H.; Marshall, C.C.; Monreal-Ibero, A.; Mulas, G.; Roueff, E.; Royer, P.; Salama, F.; Sarre, P.J.; Smith, K.T.; Spaans, M.; van Loon, J.T.; Wade, G.
AA(Department of Physics and Astronomy and Centre for Planetary Science and Exploration (CPSX), The University of Western Ontario, London, Canada; SETI Institute, Mountain View, USA) AB(Anton Pannekoek Institute for Astronomy, University of Amsterdam, The Netherlands; ACRI-ST, Sophia Antipolis, France) AC(Department of Physics and Astronomy and Centre for Planetary Science and Exploration (CPSX), The University of Western Ontario, London, Canada; School of Astronomy, Institute for Research in Fundamental Sciences, Tehran, Iran) AD(ESO) AE(GEPI, Observatoire de Paris, PSL Research University, CNRS, Université Paris-Diderot, Sorbonne Paris Cité, Meudon, France) AF(GEPI, Observatoire de Paris, PSL Research University, CNRS, Université Paris-Diderot, Sorbonne Paris Cité, Meudon, France) AG(Sackler Laboratory for Astrophysics, Leiden Observatory, Leiden University, The Netherlands) AH(Department of Physics and Astronomy and Centre for Planetary Science and Exploration (CPSX), The University of Western Ontario, London, Canada) AI(ICCM, Madrid, Spain) AJ(Astrochemistry Laboratory, NASA Goddard Space Flight Center, Greenbelt, USA; Department of Physics, The Catholic University of America, Washington DC, USA) AK(Anton Pannekoek Institute for Astronomy, University of Amsterdam, The Netherlands; Instituut voor Sterrenkunde, KU Leuven, Belgium) AL(George Washington University, Washington DC, USA) AM(UK Astronomy Technology Centre, Royal Observatory Edinburgh, UK) AN(ESTEC, ESA, Noordwijk, The Netherlands) AO(School of Astronomy, Institute for Research in Fundamental Sciences, Tehran, Iran) AP(Université de Toulouse, UPS-OMP, IRAP, Toulouse, France; CNRS, IRAP, Toulouse, France) AQ(Anton Pannekoek Institute for Astronomy, University of Amsterdam, The Netherlands) AR(School of Astronomy, Institute for Research in Fundamental Sciences, Tehran, Iran) AS(Instituut voor Sterrenkunde, KU Leuven, Belgium) AT(Sorbonne Université, Observatoire de Paris, Université PSL, CNRS, LERMA, Meudon, France) AU(Sackler Laboratory for Astrophysics, Leiden Observatory, Leiden University, The Netherlands) AV(School of Chemistry, University of Nottingham, UK) AW(Instituto de Astrofísica de Canarias (IAC), La Laguna, Tenerife, Spain; Universidad de La Laguna, Tenerife, Spain) AX(INAF–Osservatorio Astronomico di Cagliari, Selargius, Italy) AY(Sorbonne Université, Observatoire de Paris, Université PSL, CNRS, LERMA, Meudon, France) AZ(Instituut voor Sterrenkunde, KU Leuven, Belgium) BA(NASA Ames Research Center, Space Science & Astrobiology Division, Mountain View, USA) BB(School of Chemistry, University of Nottingham, UK) BC(AAAS Science International, Cambridge, UK) BD(Kapteyn Institute, University of Groningen, The Netherlands) BE(Lennard-Jones Laboratories, Keele University, UK) BF(Department of Physics, Royal Military College of Canada, Kingston, Canada)
Abstract:
The ESO Diffuse Interstellar Band Large Exploration Survey (EDIBLES) is a Large Programme that is collecting high-signal-to-noise (S/N) spectra with UVES of a large sample of O and B-type stars covering a large spectral range. The goal of the programme is to extract a unique sample of high-quality interstellar spectra from these data, representing different physical and chemical environments, and to characterise these environments in great detail. An important component of interstellar spectra is the diffuse interstellar bands (DIBs), a set of hundreds of unidentified interstellar absorption lines. With the detailed line-of-sight information and the high-quality spectra, EDIBLES will derive strong constraints on the potential DIB carrier molecules. EDIBLES will thus guide the laboratory experiments necessary to identify these interstellar “mystery molecules”, and turn DIBs into powerful diagnostics of their environments in our Milky Way Galaxy and beyond. We present some preliminary results showing the unique capabilities of the EDIBLES programme.
References:
Bailey, M. et al. 2016, A&A, 585, A12; Barba, R. H. et al. 2010, Revista Mexicana de Astronomía y Astrofísica, 38, 30; Bhatt, N. H. & Cami, J. 2015, ApJs, 216, 22; Cami, J. & Cox, N. L. J., eds. 2014, IAU Symposium, Vol. 297, The Diffuse Interstellar Bands; Campbell, E. K. et al. 2015, Nature, 523, 322; Cordiner, M. A. et al. 2017, ApJl, 843, L2; Cox, N. L. J. et al. 2017, A&A, 606, A76; Ensor, T. et al. 2017, ApJ, 836, 162; Foing, B. H. & Ehrenfreund, P. 1994, Nature, 369, 296; Galazutdinov, G. et al. 2002, A&A, 396, 987; Lallement, R. et al. 2018, arxiv:1802.00369; Lan, T.-W., Ménard, B. & Zhu, G. 2015, MNRAS, 452, 3629; Marshall, C. C. M., Krełowski, J. & Sarre, P. J. 2015, MNRAS, 453, 3912; Nazé, Y. et al. 2008, AJ, 135, 1946; Smoker, J. et al. 2009, The Messenger, 138, 8; Thorburn, J. A. et al. 2003, ApJ, 584, 339; Walker, G. A. H. et al. 2017, ApJ, 843, 56; Zhao, D. et al. 2015, ApJl, 805, L12
37-41 (PDF)
A. Baudry et al.
APEX Band 9 Reveals Vibrationally Excited Water Sources in Evolved Stars

DOI:
10.18727/0722-6691/5067
ADS BibCode:
2018Msngr.171...37B
Section:
Astronomical Science
Author(s)/Affiliation(s):
Baudry, A.; Herpin, F.; Humphreys, E.; Torstensson, K.; Vlemmings, W.; Richards, A.; Gray, M.; De Breuck, C.; Olberg, M.
AA(Laboratoire d’astrophysique de Bordeaux, Université de Bordeaux, France) AB(Laboratoire d’astrophysique de Bordeaux, Université de Bordeaux, France) AC(ESO) AD(ESO) AE(Onsala Space Observatory, Department of Space, Earth and Environment, Chalmers University of Technology, Sweden) AF(Jodrell Bank Centre for Astrophysics, University of Manchester, UK) AG(Jodrell Bank Centre for Astrophysics, University of Manchester, UK) AH(ESO) AI(Onsala Space Observatory, Department of Space, Earth and Environment, Chalmers University of Technology, Sweden)
Abstract:
We have used the Atacama Pathfinder Experiment (APEX) telescope with the sensitive Swedish-ESO PI APEX (SEPIA) Band 9 receiver to discover several new vibrationally excited line sources of water at 658 GHz in the atmosphere of selected O-rich evolved stars. We have shown that this transition is masing and can be used to probe the gas in the dust formation zone or the wind beyond the central star. The 658 GHz line is widespread in evolved stars but most sources are weaker than about 300–500 Jy. However, some exceptional cases reach up to a few thousand Jy. New models incorporating several vibrationally excited transitions of water allow us to predict the physical conditions prevailing in 658 GHz sources. The strongest ones could be mapped with ALMA to study the small-scale clumpiness of the gas in the dust formation zone or, more generally, the stellar wind.
References:
Alcolea, J. et al. 2013, A&A, 559, 93; Baudry, A. et al. 2018, A&A, 609, 25; Belitsky, V. et al. 2017, arXiv171207396B; Bujarrabal, V. et al. 2012, A&A, 537, 8; Cheung, A. C. et al. 1969, Nature, 221, 626; Gray, M. D. et al. 2016, MNRAS, 456, 374; Groenewegen, M. A. T. et al. 1999, A&AS, 140, 197; Hirota, T. et al. 2016, ApJ, 817, 168; Hunter, T. R. et al. 2007, IAU Symposium, 242, 471; Justtanont, K. et al. 2012, A&A, 537, 144; Kerschbaum, F. & Olofsson, H. 1999, A&AS, 138, 299; Kim, J. et al. 2010, ApJS, 188, 209; Kim, J. et al. 2014, AJ, 147, 22; Menten, K. M. & Young, K. 1995, ApJ, 450, L67; Richards, A. M. S. et al. 2014, A&A, 572, L9; Spinrad, H. & Newburn, Jr. R. L. 1965, ApJ, 141, 965; Teyssier, D. et al. 2012, A&A, 545, 99; Winters, J. M. et al. 2002, A&A, 308, 609

Astronomical News

43-44 (PDF)
W. Benz
New President of Council

DOI:
10.18727/0722-6691/5068
ADS BibCode:
2018Msngr.171...43B
Section:
Astronomical News
Author(s)/Affiliation(s):
Benz, W.
AA(University of Bern & National Centre of Competence in Research PlanetS, Switzerland)
44-45 (PDF)
P. Roche
Review of the Last Three Years at ESO

DOI:
10.18727/0722-6691/5069
ADS BibCode:
2018Msngr.171...44R
Section:
Astronomical News
Author(s)/Affiliation(s):
Roche, P.
AA(Oxford University, UK)
46-47 (PDF)
P. Andreani et al.
QUESO: Submillimetre/Millimetre/Centimetre Q & U (and V)

DOI:
10.18727/0722-6691/5070
ADS BibCode:
2018Msngr.171...46A
Section:
Astronomical News
Author(s)/Affiliation(s):
Andreani, P.; Laing, R.; Lu, H.-Y.
AA(ESO) AB(Square Kilometre Array Organisation, Jodrell Bank Observatory, Manchester, UK) AC(ESO)
Abstract:
Polarised emission encodes essential physical information about many components of the Universe, ranging from dust grains and magnetic fields in molecular clouds, protoplanetary discs and evolved stars, through to the formation and propagation of relativistic outflows in Active Galactic Nuclei, and to the effects of inflation and primordial gravitational waves on Cosmic Microwave Background (CMB) anisotropies. The aim of this workshop was to bring together current and future ALMA users, observatory calibration experts and software developers from a broad range of research fields making use of polarimetric techniques in the frequency range between approximately 5 and 1000 GHz. This range was deliberately restricted in order to focus attention on common problems and to promote cross-fertilisation between different subject areas. The meeting provided an opportunity for the polarimetric community to develop collaborations, understand the latest technological developments and decide on common priorities for the future.
47-48 (PDF)
C. Evans et al.
Spectroscopic Surveys with the ELT: A Gigantic Step into the Deep Universe

DOI:
10.18727/0722-6691/5071
ADS BibCode:
2018Msngr.171...47E
Section:
Astronomical News
Author(s)/Affiliation(s):
Evans, C.; Puech, M.; Hammer, F.; Gallego, J.; Sánchez, A.; García, L.; Iglesias, J.
AA(UK Astronomy Technology Centre, Royal Observatory Edinburgh, UK) AB(GEPI, Observatoire de Paris, France) AC(GEPI, Observatoire de Paris, France) AD(Universidad Complutense de Madrid, Spain) AE(Universidad Complutense de Madrid, Spain) AF(Universidad Complutense de Madrid, Spain) AG(Instituto de Astrofísica de Andalucía (CSIC), Spain)
Abstract:
The Phase A design of MOSAIC, a powerful multi-object spectrograph intended for ESO’s Extremely Large Telescope, concluded in late 2017. With the design complete, a three-day workshop was held last October in Toledo to discuss the breakthrough spectroscopic surveys that MOSAIC can deliver across a broad range of contemporary astronomy.
References:
Puech, M. et al. 2016, Proc. SPIE, 9908, 9
49-52 (PDF)
D. Kakkad et al.
Fellows at ESO

DOI:
10.18727/0722-6691/5072
ADS BibCode:
2018Msngr.171...49E
Section:
Astronomical News
Author(s)/Affiliation(s):
Kakkad, D.; Bartlett, E.; Lu, H.-Y.
AA(ESO) AB(ESO) AC(ESO)
52-52 (PDF)
ESO
Personnel Movements

ADS BibCode:
2018Msngr.171...52E
Section:
Astronomical News
Author(s)/Affiliation(s):
ESO

53-55 (PDF)
ESO
Annual Index 2017 (Nos. 167–170)

ADS BibCode:
2018Msngr.171...53E
Author(s)/Affiliation(s):
ESO