Messenger No. 178 (Quarter 4 | 2019)

« Back to The Messenger home

Telescopes and Instrumentation

3-4 (PDF)
Vernet, E. et al.
ELT M4 — The Largest Adaptive Mirror Ever Built

DOI:
10.18727/0722-6691/5162
ADS BibCode:
2019Msngr.178....3V
Section:
Telescopes and Instrumentation
Author(s)/Affiliation(s):
Vernet, E.; Cirasuolo, M.; Cayrel, M.; Tamai, R.; Kellerer, A.; Pettazzi, L.; Lilley, P.; Zuluaga, P.; Diaz Cano, C.; Koehler, B.; Biancat Marchet, F.; Gonzalez, J.C.; Tuti, M.; The ELT Team
AA(ESO) AB(ESO) AC(ESO) AD(ESO) AE(ESO) AF(ESO) AG(ESO) AH(ESO) AI(ESO) AJ(ESO) AK(ESO) AL(ESO) AM(ESO) AN(ESO)
Abstract:
The Extremely Large Telescope (ELT) is at the core of ESO’s vision to deliver the largest optical and infrared telescope in the world. Continuing our series of Messenger articles describing the optical elements of the ELT, we focus here on the quaternary mirror (M4), a true technological wonder; it is the largest deformable mirror ever made. In combination with M5, M4 is vital to delivering the sharp (diffraction-limited) images needed for science by correcting for atmospheric turbulence and the vibrations of the telescope itself. Here we describe the main characteristics of M4, the challenges and complexity involved in the production of this unique adaptive mirror, and its manufacturing status.
5-9 (PDF)
Kasper, M. et al.
NEAR: First Results from the Search for Low-Mass Planets in α Cen

DOI:
10.18727/0722-6691/5163
ADS BibCode:
2019Msngr.178....5K
Section:
Telescopes and Instrumentation
Author(s)/Affiliation(s):
Kasper, M.; Arsenault, R.; Käufl, U.; Jakob, G.; Leveratto, S.; Zins, G.; Pantin, E.; Duhoux, P.; Riquelme, M.; Kirchbauer, J.-P.; Kolb, J.; Pathak, P.; Siebenmorgen, R.; Soenke, C.; Fuenteseca, E.; Sterzik, M.; Ageorges, N.; Gutruf, S.; Kampf, D.; Reutlinger, A.; Absil, O.; Delacroix, C.; Maire, A.-L.; Huby, E.; Guyon, O.; Klupar, P.; Mawet, D.; Ruane, G.; Karlsson, M.; Dohlen, K.; Vigan, A.; N’Diaye, M.; Quanz, S.; Carlotti, A.
AA(ESO) AB(ESO) AC(ESO) AD(ESO) AE(ESO) AF(ESO) AG(AIM, CEA, CNRS, Université Paris- Saclay, Université Paris Diderot, Sorbonne Paris Cité, Gif-sur-Yvette, France) AH(ESO) AI(ESO) AJ(ESO) AK(ESO) AL(ESO) AM(ESO) AN(ESO) AO(ESO) AP(ESO) AQ(Kampf Telescope Optics (KT Optics), Munich, Germany) AR(Kampf Telescope Optics (KT Optics), Munich, Germany) AS(Kampf Telescope Optics (KT Optics), Munich, Germany) AT(Kampf Telescope Optics (KT Optics), Munich, Germany) AU(University of Liège, Liège, Belgium) AV(University of Liège, Liège, Belgium) AW(University of Liège, Liège, Belgium) AX(Observatoire de Paris-Meudon, France) AY(Subaru Telescope, Tokyo, Japan; Breakthrough Initiatives, Mountainview, USA) AZ(Breakthrough Initiatives, Mountainview, USA) BA(Caltech, Pasadena, USA) BB(Caltech, Pasadena, USA) BC(Uppsala University, Sweden) BD(Laboratoire d’Astrophysique Marseille, France) BE(Laboratoire d’Astrophysique Marseille, France) BF(Observatoire de la Côte d’Azur, Nice, France) BG(Eidgenössische Technische Hochschule Zürich, Switzerland) BH(Institude de Planétologie et d’Astrophysique de Grenoble, France)
Abstract:
ESO, in collaboration with the Breakthrough Initiatives, has modified the VLT mid-infrared imager VISIR to greatly enhance its ability as a planet finder. It has conducted a 100-hour observing campaign to search for low-mass planets around both components of the binary a Centauri, part of the closest stellar system to the Earth. Using adaptive optics and high-performance coronagraphy, the instrument reached unprecedented contrast and sensitivity allowing it to see Neptune-sized planets in the habitable zone, if present. The experiment allowed us to characterise the current limitations of the instrument. We conclude that the detection of rocky planets similar to Earth in the habitable zone of the a Centauri System is already possible with 8-metre-class telescopes in the thermal infrared.
References:
Anglada-Escudé, G. et al. 2016, Nature, 536, 437; Carlotti, A. et al. 2012, Proc. SPIE, 8442, 844254; Huby, E. et al. 2015, A&A, 584, A74; Ives, D. et al. 2014, Proc. SPIE, 9154, 91541J Kasper, M. et al. 2017, The Messenger, 169, 16; Lagage, P. O. et al. 2004, The Messenger, 117, 12; Mawet, D. et al. 2005, ApJ, 633, 1191; N’Diaye, M. et al. 2014, Proc. SPIE, 9148, 91485H
10-16 (PDF)
Arnaboldi, M. et al.
Report on Status of ESO Public Surveys and Current Activities

DOI:
10.18727/0722-6691/5164
ADS BibCode:
2019Msngr.178...10A
Section:
Telescopes and Instrumentation
Author(s)/Affiliation(s):
Arnaboldi, M.; Delmotte, N.; Gadotti, D.; Hilker, M.; Hussain, G.; Mascetti, L.; Micol, A.; Petr-Gotzens, M.; Rejkuba, M.; Retzlaff, J.; Spiniello, C.; Leibundgut, B.; Romaniello, M.
AA(ESO) AB(ESO) AC(ESO) AD(ESO) AE(ESO) AF(Terma GmbH, Darmstadt, Germany) AG(ESO) AH(ESO) AI(ESO) AJ(ESO) AK(ESO; Astronomical Observatory of Capodimonte, Naples, Italy a) AL(ESO) AM(ESO)
Abstract:
This report on the status of the ESO Public Surveys includes a brief overview of their legacy value and scientific impact. Their legacy is ensured by their homogeneity, sensitivity, large sky coverage in multiple filters, large number of targets, wavelength coverage and spectral resolution, which make them useful for the community at large, extending beyond the scientific goals identified by the survey teams. In May 2019, as almost all first-generation imaging and spectroscopic surveys completed their observations and second- generation imaging surveys got well underway, the Public Survey Panel reviewed the scientific impact of these projects. The review was based on a quantitative assessment of the number of refereed publications from the survey teams and archive users. It included the number of citations, the number of data releases and statistics on access to archive data by the user community. The ESO Users Committee also discussed the availability and usage of ESO Public Survey data by the community during their yearly meeting in April 2019. We describe the status of these projects with respect to their observing plans, highlight the most recent data releases and provide links to the resulting science data products.
References:
Arnaboldi, M. et al. 2007, The Messenger, 127, 28; Arnaboldi, M. et al. 2014, The Messenger, 156, 24; Arnaboldi, M. et al. 2017, The Messenger, 168, 15; Capaccioli, M. & Schipani, P. 2011, The Messenger, 146, 2; Cioni, M.-R. et al. 2013, The Messenger, 154, 23; de Jong, R. 2019, The Messenger, 175, 3; de Jong, R. et al. 2013, The Messenger, 154, 44; Drew, J. E. et al. 2013, The Messenger, 154, 41; Edge, A. et al. 2013, The Messenger, 154, 32; Hempel, M. et al. 2014, The Messenger, 155, 29; Jarvis, M. J. et al. 2013, The Messenger, 154, 26; Liske, J. & Mainieri, V. 2019, The Messenger, 177, 61; McCracken, H. J. et al. 2013, The Messenger, 154, 29; McLure, R. et al. 2017, The Messenger, 167, 31; McMahon, R. et al. 2013, The Messenger, 154, 35; Randich, S. et al. 2013, The Messenger, 154, 47; Shanks, T. et al. 2013, The Messenger, 154, 38; Smartt, S. et al. 2013, The Messenger, 154, 50; Sutherland, W. et al. 2015, A&A, 575, 27 Tanvir, N. et al. 2017, ApJ, 848, 27; van der Wel, A. et al. 2016, The Messenger, 164, 36
17-18 (PDF)
Ivanov, V.D. et al.
MUSE Spectral Library

DOI:
10.18727/0722-6691/5165
ADS BibCode:
2019Msngr.178...17I
Section:
Telescopes and Instrumentation
Author(s)/Affiliation(s):
Ivanov, V.D.; Coccato, L.; Neeser, M.J.; Selman, F.; Pizzella, A.; Dalla Bontà, E.; Corsini, E.M.; Morelli, L.
AA(ESO) AB(ESO) AC(ESO) AD(ESO) AE(Dipartimento di Fisica e Astronomia “G. Galilei”, Università di Padova, Italy; INAF–Osservatorio Astronomico di Padova, Italy) AF(Dipartimento di Fisica e Astronomia “G. Galilei”, Università di Padova, Italy; INAF–Osservatorio Astronomico di Padova, Italy) AG(Dipartimento di Fisica e Astronomia “G. Galilei”, Università di Padova, Italy; INAF–Osservatorio Astronomico di Padova, Italy) AH(Instituto de Astronomía y Ciencias Planetarias, Universidad de Atacama, Copiapó, Chile)
Abstract:
Empirical stellar spectral libraries have applications in both extragalactic and stellar studies. We have assembled the MUSE Spectral Library (MSL), consisting of 35 high-quality spectra of stars covering the Hertzsprung–Russell diagram, and verified the continuum shape of our spectra with synthetic broadband colours. We also report indices from the Lick system, derived from the new observations. Our data demonstrate that integral field units (IFUs) are excellent tools for building spectral libraries with reliable continuum shapes that can be used as templates for extragalactic studies.
References:
Bacon, R. et al. 2010, Proc. SPIE, 7735, 773508; Castelli, F., Gratton, R. G. & Kurucz, R. L. 1997, A&A, 318, 841; Chen, Y.-P. et al. 2014, A&A, 565, A117; Freudling, W. et al. 2013, A&A, 559, A96; Ivanov, V. D. et al. 2019, A&A, 629, 100; Le Borgne, J.-F. et al. 2003, A&A, 402, 433; Le Borgne, D. et al. 2004, A&A, 425, 881; Pickles, A. J. 1998, PASP, 110, 863; Prugniel, P. & Soubiran, C. 2001, A&A, 369, 1048; Sansom, A. E. et al. 2013, MNRAS, 435, 952; Soubiran, C. et al. 1998, A&AS, 133, 221; Yan, R. et al. 2019, ApJ, 883, 175; Worthey, G. et al. 1994, ApJS, 94, 687

GRAVITY Science

20-24 (PDF)
GRAVITY Collaboration et al.
Spatially Resolving the Quasar Broad Emission Line Region

DOI:
10.18727/0722-6691/5166
ADS BibCode:
2019Msngr.178...20A
Section:
GRAVITY Science
Author(s)/Affiliation(s):
GRAVITY Collaboration; Abuter, R.; Accardo, M.; Adler, T.; Amorim, A.; Anugu, N.; Ávila, G.; Bauböck, M.; Benisty, M.; Berger, J.-P.; Bestenlehner, J.M.; Beust, H.; Blind, N.; Bonnefoy, M.; Bonnet, H.; Bourget, P.; Bouvier, J.; Brandner, W.; Brast, R.; Buron, A.; Burtscher, L.; Cantalloube, F.; Caratti o Garatti, A.; Caselli, P.; Cassaing, F.; Chapron, F.; Charnay, B.; Choquet, É.; Clénet, Y.; Collin, C.; Coudé du Foresto, V.; Davies, R.; Deen, C.; Delplancke-Ströbele, F.; Dembet, R.; Derie, F.; de Wit, W.-J.; Dexter, J.; de Zeeuw, T.; Dougados, C.; Dubus, G.; Duvert, G.; Ebert, M.; Eckart, A.; Eisenhauer, F.; Esselborn, M.; Eupen, F.; Fédou, P.; Ferreira, M.C.; Finger, G.; Förster Schreiber, N.M.; Gao, F.; García Dabó, C.E.; Garcia Lopez, R.; Garcia, P.J.V.; Gendron, É.; Genzel, R.; Gerhard, O.; Gil, J.P.; Gillessen, S.; Gonté, F.; Gordo, P.; Gratadour, D.; Greenbaum, A.; Grellmann, R.; Grözinger, U.; Guajardo, P.; Guieu, S.; Habibi, M.; Haguenauer, P.; Hans, O.; Haubois, X.; Haug, M.; Haußmann, F.; Henning, T.; Hippler, S.; Hönig, S.F.; Horrobin, M.; Huber, A.; Hubert, Z.; Hubin, N.; Hummel, C.A.; Jakob, G.; Janssen, A.; Jimenez Rosales, A.; Jochum, L.; Jocou, L.; Kammerer, J.; Karl, M.; Kaufer, A.; Kellner, S.; Kendrew, S.; Kern, L.; Kervella, P.; Kiekebusch, M.; Kishimoto, M.; Klarmann, L.; Klein, R.; Köhler, R.; Kok, Y.; Kolb, J.; Koutoulaki, M.; Kulas, M.; Labadie, L.; Lacour, S.; Lagrange, A.-M.; Lapeyrère, V.; Laun, W.; Lazareff, B.; Le Bouquin, J.-B.; Léna, P.; Lenzen, R.; Lévêque, S.; Lin, C.-C.; Lippa, M.; Lutz, D.; Magnard, Y.; Maire, A.-L.; Mehrgan, L.; Mérand, A.; Millour, F.; Mollière, P.; Moulin, T.; Müller, A.; Müller, E.; Müller, F.; Netzer, H.; Neumann, U.; Nowak, M.; Oberti, S.; Ott, T.; Pallanca, L.; Panduro, J.; Pasquini, L.; Paumard, T.; Percheron, I.; Perraut, K.; Perrin, G.; Peterson, B.M.; Petrucci, P.-O.; Pflüger, A.; Pfuhl, O.; Phan Duc, T.; Pineda, J.E.; Plewa, P.M.; Popovic, D.; Pott, J.-U.; Prieto, A.; Pueyo, L.; Rabien, S.; Ramírez, A.; Ramos, J.R.; Rau, C.; Ray, T.; Riquelme, M.; Rodríguez-Coira, G.; Rohloff, R.-R.; Rouan, D.; Rousset, G.; Sanchez-Bermudez, J.; Schartmann, M.; Scheithauer, S.; Schöller, M.; Schuhler, N.; Segura-Cox, D.; Shangguan, J.; Shimizu, T.T.; Spyromilio, J.; Sternberg, A.; Stock, M.R.; Straub, O.; Straubmeier, C.; Sturm, E.; Suárez Valles, M.; Tacconi, L.J.; Thi, W.-F.; Tristram, K.R.W.; Valenzuela, J.J.; van Boekel, R.; van Dishoeck, E.F.; Vermot, P.; Vincent, F.; von Fellenberg, S.; Waisberg, I.; Wang, J.J.; Wank, I.; Weber, J.; Weigelt, G.; Widmann, F.; Wieprecht, E.; Wiest, M.; Wiezorrek, E.; Wittkowski, M.; Woillez, J.; Wolff, B.; Yang, P.; Yazici, S.; Ziegler, D.; Zins, G.
AB(ESO) AC(ESO) AD(Max-Planck-Institut für Astronomie, Heidelberg, Germany) AE(CENTRA and Universidade de Lisboa − Faculdade de Ciências, Lisboa, Portugal) AF(CENTRA and Universidade do Porto – Faculdade de Engenharia, Porto, Portugal; Steward Observatory, Department of Astronomy, University of Arizona, Tucson, USA; University of Exeter, School of Physics and Astronomy, Exeter, UK) AG(ESO) AH(Max Planck Institute for Extraterrestrial Physics, Garching, Germany) AI(Univ. Grenoble Alpes, CNRS, IPAG, Grenoble, France; Unidad Mixta Internacional Franco- Chilena de Astronomía (CNRS UMI 3386), Departamento de Astronomía, Universidad de Chile, Las Condes, Santiago, Chile) AJ(Univ. Grenoble Alpes, CNRS, IPAG, Grenoble, France) AK(Department of Physics and Astronomy, University of Sheffield, UK; Max-Planck-Institut für Astronomie, Heidelberg, Germany) AL(Univ. Grenoble Alpes, CNRS, IPAG, Grenoble, France) AM(Observatoire de Genève, Université de Genève, Versoix, Switzerland) AN(Univ. Grenoble Alpes, CNRS, IPAG, Grenoble, France) AO(ESO) AP(ESO) AQ(Univ. Grenoble Alpes, CNRS, IPAG, Grenoble, France) AR(Max-Planck-Institut für Astronomie, Heidelberg, Germany) AS(ESO) AT(Max Planck Institute for Extraterrestrial Physics, Garching, Germany) AU(Sterrewacht Leiden, Leiden University, Leiden, the Netherlands) AV(Max-Planck-Institut für Astronomie, Heidelberg, Germany) AW(Dublin Institute for Advanced Studies, Dublin, Ireland; Max-Planck-Institut für Astronomie, Heidelberg, Germany) AX(Max Planck Institute for Extraterrestrial Physics, Garching, Germany) AY(DOTA, ONERA, Université Paris- Saclay, Châtillon, France) AZ(LESIA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Université de Paris, Meudon, France) BA(LESIA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Université de Paris, Meudon, France) BB(Aix Marseille Univ, CNRS, CNES, LAM, France) BC(LESIA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Université de Paris, Meudon, France) BD(LESIA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Université de Paris, Meudon, France) BE(LESIA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Université de Paris, Meudon, France) BF(Max Planck Institute for Extraterrestrial Physics, Garching, Germany) BG(Max Planck Institute for Extraterrestrial Physics, Garching, Germany) BH(ESO) BI(ESO) BJ(ESO) BK(ESO) BL(Max Planck Institute for Extraterrestrial Physics, Garching, Germany) BM(Max Planck Institute for Extraterrestrial Physics, Garching, Germany; Sterrewacht Leiden, Leiden University, Leiden, the Netherlands) BN(Univ. Grenoble Alpes, CNRS, IPAG, Grenoble, France) BO(Univ. Grenoble Alpes, CNRS, IPAG, Grenoble, France) BP(Univ. Grenoble Alpes, CNRS, IPAG, Grenoble, France) BQ(Max-Planck-Institut für Astronomie, Heidelberg, Germany) BR(I Physikalisches Institut, Universität zu Köln, Germany; Max Planck Institute for Radio Astronomy, Bonn, Germany) BS(Max Planck Institute for Extraterrestrial Physics, Garching, Germany) BT(ESO) BU(I Physikalisches Institut, Universität zu Köln, Germany) BV(LESIA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Université de Paris, Meudon, France) BW(CENTRA and Universidade de Lisboa − Faculdade de Ciências, Lisboa, Portugal) BX(ESO) BY(Max Planck Institute for Extraterrestrial Physics, Garching, Germany) BZ(Max Planck Institute for Extraterrestrial Physics, Garching, Germany) CA(ESO) CB(Dublin Institute for Advanced Studies, Dublin, Ireland; Max-Planck-Institut für Astronomie, Heidelberg, Germany) CC(CENTRA and Universidade do Porto – Faculdade de Engenharia, Porto, Portugal) CD(LESIA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Université de Paris, Meudon, France) CE(Max Planck Institute for Extraterrestrial Physics, Garching, Germany; Department of Physics, Le Conte Hall, University of California, Berkeley, USA) CF(Max Planck Institute for Extraterrestrial Physics, Garching, Germany) CG(ESO) CH(Max Planck Institute for Extraterrestrial Physics, Garching, Germany) CI(ESO) CJ(CENTRA and Universidade de Lisboa − Faculdade de Ciências, Lisboa, Portugal) CK(LESIA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Université de Paris, Meudon, France) CL(University of Michigan Department of Astronomy, Ann Arbor, USA) CM(I Physikalisches Institut, Universität zu Köln, Germany) CN(Max-Planck-Institut für Astronomie, Heidelberg, Germany) CO(ESO) CP(Univ. Grenoble Alpes, CNRS, IPAG, Grenoble, France) CQ(Max Planck Institute for Extraterrestrial Physics, Garching, Germany) CR(ESO) CS(Max Planck Institute for Extraterrestrial Physics, Garching, Germany) CT(ESO) CU(ESO) CV(Max Planck Institute for Extraterrestrial Physics, Garching, Germany) CW(Max-Planck-Institut für Astronomie, Heidelberg, Germany) CX(Max-Planck-Institut für Astronomie, Heidelberg, Germany) CY(School of Physics & Astronomy, University of Southampton, UK) CZ(I Physikalisches Institut, Universität zu Köln, Germany) DA(Max-Planck-Institut für Astronomie, Heidelberg, Germany) DB(Univ. Grenoble Alpes, CNRS, IPAG, Grenoble, France) DC(ESO) DD(ESO) DE(ESO) DF(NOVA Optical Infrared Instrumentation Group at ASTRON, Dwingeloo, the Netherlands) DG(Max Planck Institute for Extraterrestrial Physics, Garching, Germany) DH(ESO) DI(Univ. Grenoble Alpes, CNRS, IPAG, Grenoble, France) DJ(ESO; Research School of Astronomy & Astrophysics, Australian National University, Canberra, Australia) DK(Max Planck Institute for Physics, Munich, Germany; TUM Department of Physics, Technical University of Munich, Garching, Germany) DL(ESO) DM(Max Planck Institute for Extraterrestrial Physics, Garching, Germany) DN(European Space Agency, Space Telescope Science Institute, Baltimore, USA; Max-Planck-Institut für Astronomie, Heidelberg, Germany) DO(ESO) DP(LESIA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Université de Paris, Meudon, France) DQ(ESO) DR(Kyoto Sangyo University, Department of Astrophysics and Atmospheric Sciences, Japan) DS(Max-Planck-Institut für Astronomie, Heidelberg, Germany) DT(Max-Planck-Institut für Astronomie, Heidelberg, Germany) DU(Max-Planck-Institut für Astronomie, Heidelberg, Germany) DV(Max Planck Institute for Extraterrestrial Physics, Garching, Germany) DW(ESO) DX(Dublin Institute for Advanced Studies, Dublin, Ireland; School of Physics, University College Dublin, Ireland; Max-Planck-Institut für Astronomie, Heidelberg, Germany; ESO) DY(Max-Planck-Institut für Astronomie, Heidelberg, Germany) DZ(I Physikalisches Institut, Universität zu Köln, Germany) EA(LESIA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Université de Paris, Meudon, France; ESO) EB(Univ. Grenoble Alpes, CNRS, IPAG, Grenoble, France) EC(LESIA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Université de Paris, Meudon, France) ED(Max-Planck-Institut für Astronomie, Heidelberg, Germany) EE(Univ. Grenoble Alpes, CNRS, IPAG, Grenoble, France) EF(Univ. Grenoble Alpes, CNRS, IPAG, Grenoble, France) EG(LESIA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Université de Paris, Meudon, France) EH(Max-Planck-Institut für Astronomie, Heidelberg, Germany) EI(ESO) EJ(Max-Planck-Institut für Astronomie, Heidelberg, Germany; Institute for Astronomy, University of Hawai’i, Honolulu, USA) EK(Max Planck Institute for Extraterrestrial Physics, Garching, Germany) EL(Max Planck Institute for Extraterrestrial Physics, Garching, Germany) EM(Univ. Grenoble Alpes, CNRS, IPAG, Grenoble, France) EN(STAR Institute, Liège, Belgium; Max-Planck-Institut für Astronomie, Heidelberg, Germany) EO(ESO) EP(ESO) EQ(Aix Marseille Univ, CNRS, CNES, LAM, France) ER(Max-Planck-Institut für Astronomie, Heidelberg, Germany) ES(Univ. Grenoble Alpes, CNRS, IPAG, Grenoble, France) ET(Max-Planck-Institut für Astronomie, Heidelberg, Germany) EU(ESO; Max-Planck-Institut für Astronomie, Heidelberg, Germany) EV(Max-Planck-Institut für Astronomie, Heidelberg, Germany) EW(School of Physics and Astronomy, Tel Aviv University, Israel) EX(Max-Planck-Institut für Astronomie, Heidelberg, Germany) EY(LESIA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Université de Paris, Meudon, France) EZ(ESO) FA(Max Planck Institute for Extraterrestrial Physics, Garching, Germany) FB(ESO) FC(Max-Planck-Institut für Astronomie, Heidelberg, Germany) FD(ESO) FE(LESIA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Université de Paris, Meudon, France) FF(ESO) FG(Univ. Grenoble Alpes, CNRS, IPAG, Grenoble, France) FH(LESIA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Université de Paris, Meudon, France) FI(Department of Astronomy, The Ohio State University, Columbus, USA; Center for Cosmology and AstroParticle Physics, The Ohio State University, Columbus, USA; Space Telescope Science Institute, Baltimore, USA) FJ(Univ. Grenoble Alpes, CNRS, IPAG, Grenoble, France) FK(Max Planck Institute for Extraterrestrial Physics, Garching, Germany) FL(ESO) FM(ESO) FN(Max Planck Institute for Extraterrestrial Physics, Garching, Germany) FO(Max Planck Institute for Extraterrestrial Physics, Garching, Germany) FP(ESO) FQ(Max-Planck-Institut für Astronomie, Heidelberg, Germany) FR(Instituto de Astrofísica de Canarias, La Laguna, Spain) FS(European Space Agency, Space Telescope Science Institute, Baltimore, USA) FT(Max Planck Institute for Extraterrestrial Physics, Garching, Germany) FU(ESO) FV(Max-Planck-Institut für Astronomie, Heidelberg, Germany) FW(Max Planck Institute for Extraterrestrial Physics, Garching, Germany) FX(Dublin Institute for Advanced Studies, Dublin, Ireland) FY(ESO) FZ(LESIA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Université de Paris, Meudon, France) GA(Max-Planck-Institut für Astronomie, Heidelberg, Germany) GB(LESIA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Université de Paris, Meudon, France) GC(LESIA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Université de Paris, Meudon, France) GD(Max-Planck-Institut für Astronomie, Heidelberg, Germany; Instituto de Astronomía, Universidad Nacional Autónoma de México, Ciudad de México, Mexico) GE(Max Planck Institute for Extraterrestrial Physics, Garching, Germany; Excellence Cluster Origins, Ludwig- Maximilians-Universität München, Garching, Germany; Universitäts-Sternwarte München, Munich, Germany) GF(Max-Planck-Institut für Astronomie, Heidelberg, Germany) GG(ESO) GH(ESO) GI(Max Planck Institute for Extraterrestrial Physics, Garching, Germany) GJ(Max Planck Institute for Extraterrestrial Physics, Garching, Germany) GK(Max Planck Institute for Extraterrestrial Physics, Garching, Germany) GL(ESO) GM(Max Planck Institute for Extraterrestrial Physics, Garching, Germany; School of Physics and Astronomy, Tel Aviv University, Israel) GN(TUM Department of Physics, Technical University of Munich, Garching, Germany) GO(Max Planck Institute for Extraterrestrial Physics, Garching, Germany; LESIA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Université de Paris, Meudon, France) GP(I Physikalisches Institut, Universität zu Köln, Germany) GQ(Max Planck Institute for Extraterrestrial Physics, Garching, Germany) GR(ESO) GS(Max Planck Institute for Extraterrestrial Physics, Garching, Germany) GT(Max Planck Institute for Extraterrestrial Physics, Garching, Germany) GU(ESO) GV(ESO) GW(Max-Planck-Institut für Astronomie, Heidelberg, Germany) GX(Sterrewacht Leiden, Leiden University, Leiden, the Netherlands) GY(LESIA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Université de Paris, Meudon, France) GZ(LESIA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Université de Paris, Meudon, France) HA(Max Planck Institute for Extraterrestrial Physics, Garching, Germany) HB(Max Planck Institute for Extraterrestrial Physics, Garching, Germany) HC(Department of Astronomy, California Institute of Technology, Pasadena, USA) HD(I Physikalisches Institut, Universität zu Köln, Germany) HE(Max Planck Institute for Extraterrestrial Physics, Garching, Germany) HF(Max Planck Institute for Radio Astronomy, Bonn, Germany) HG(Max Planck Institute for Extraterrestrial Physics, Garching, Germany) HH(Max Planck Institute for Extraterrestrial Physics, Garching, Germany) HI(I Physikalisches Institut, Universität zu Köln, Germany) HJ(Max Planck Institute for Extraterrestrial Physics, Garching, Germany) HK(ESO) HL(ESO) HM(ESO) HN(Max-Planck-Institut für Astronomie, Heidelberg, Germany; Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, China) HO(Max Planck Institute for Extraterrestrial Physics, Garching, Germany; I Physikalisches Institut, Universität zu Köln, Germany) HP(LESIA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Université de Paris, Meudon, France) HQ(ESO)
Abstract:
The angular resolution of the Very Large Telescope Interferometer (VLTI) and the excellent sensitivity of GRAVITY have led to the first detection of spatially resolved kinematics of high velocity atomic gas near an accreting super- massive black hole, revealing rotation on sub-parsec scales in the quasar 3C 273 at a distance of 550 Mpc. The observations can be explained as the result of circular orbits in a thick disc configuration around a 300 million solar mass black hole. Within an ongoing Large Programme, this capability will be used to study the kinematics of atomic gas and its relation to hot dust in a sample of quasars and Seyfert galaxies. We will measure a new radius-luminosity relation from spatially resolved data and test the current methods used to measure black hole mass in large surveys.
References:
Peterson, B. M. et al. 2004, ApJ, 613, 682; Kaspi, S. et al. 2000, ApJ, 533, 631; Rakshit, S. et al. 2015, MNRAS, 447, 2420; GRAVITY Collaboration 2018, Nature, 563, 657; GRAVITY Collaboration 2019a, submitted to A&A, arXiv:1910.00593; GRAVITY Collaboration 2019b, submitted to A&A Bentz, M. C. et al. 2013, ApJ, 767, 149; Du, P. et al. 2018, ApJ, 856, 6; Grier, C. J. et al. 2017, ApJ, 851, 21; Pancoast, A. et al. 2008, MNRAS, 445, 3073; Kishimoto, M. et al. 2011, A&A, 527, 121; Weigelt, G. et al. 2012, A&A Letters, 451, 9; Zhang, Z.-X. et al. 2019, ApJ, 876, 49
24-26 (PDF)
GRAVITY Collaboration
An Image of the Dust Sublimation Region in the Nucleus of NGC 1068

DOI:
10.18727/0722-6691/5167
ADS BibCode:
2019Msngr.178...24E
Section:
GRAVITY Science
Author(s)/Affiliation(s):
GRAVITY Collaboration

Abstract:
The superb resolution of the Very Large Telescope Interferometer (VLTI) and the unrivalled sensitivity of GRAVITY have allowed us to reconstruct the first detailed image of the dust sublimation region in an active galaxy. In the nearby archetypal Seyfert 2 galaxy NGC 1068, the 2 µm continuum emission traces a highly inclined thin ring-like structure with a radius of 0.24 pc. The observed morphology challenges the picture of a geometrically and optically thick torus.
References:
Antonucci, R. R. J. & Miller, J. S. 1985, ApJ, 297, 621; Burtscher, L. et al. 2013, A&A, 558, 149; García-Burillo, S. et al. 2016, ApJ, 823, L12; Gallimore, J. & Impellizzeri, V. 2019, submitted to ApJ GRAVITY Collaboration 2019, accepted by A&A Hönig, S. F. 2019, accepted by ApJ Imanishi, M. et al. 2018, ApJ, 853, L25; Krolik, J. H. & Begelman, M. C. 1988, ApJ, 329, 702; Lutz, D. et al. 2000, ApJ, 530, 733; Thiébaut, E. 2008, Proc. SPIE, 7013, 70131I
26-29 (PDF)
GRAVITY Collaboration
GRAVITY and the Galactic Centre

DOI:
10.18727/0722-6691/5168
ADS BibCode:
2019Msngr.178...26E
Section:
GRAVITY Science
Author(s)/Affiliation(s):
GRAVITY Collaboration

Abstract:
On a clear night, our home galaxy, the Milky Way, is visible as a starry ribbon across the sky. Its core is located in the constellation of Sagittarius, approximately where the bright glow is interrupted by the darkest dust filaments. There, hidden, lies a massive black hole. To peer through the obscuring clouds and see the stars and gas near the black hole we use GRAVITY. The main GRAVITY results are the detection of gra- vitational redshift, the most precise mass- distance measurement, the test of the equivalence principle, and the detection of orbital motion near the black hole.
References:
GRAVITY Collaboration 2017, A&A, 602, 23 GRAVITY Collaboration 2018a, A&A, 615, 15G GRAVITY Collaboration 2018b, A&A, 618, 15 GRAVITY Collaboration 2019a, Phys. Rev. Lett., 122, 101102 GRAVITY Collaboration 2019b, A&A, 625, 10
29-31 (PDF)
GRAVITY Collaboration
Spatially Resolved Accretion-Ejection in Compact Binaries with GRAVITY

DOI:
10.18727/0722-6691/5169
ADS BibCode:
2019Msngr.178...29E
Section:
GRAVITY Science
Author(s)/Affiliation(s):
GRAVITY Collaboration

Abstract:
The GRAVITY instrument at the Very Large Telescope Interferometer has led to the first spatially resolved observations of X-ray binaries at scales comparable to the binary orbit, providing unprecedented spatial information on their accretion-ejection mechanisms. In particular, observations of the hypercritical accretor SS433 have revealed a variety of spatial structures at the heart of this exotic microquasar, including bipolar outflows, super-Keplerian equatorial outflows and extended baryonic jets photoionised by collimated ultraviolet radiation.
References:
Blondin, J. M. 1994, ApJ, 435, 756 Blundell, K. et al. 2001, ApJ, 562, L79 Fabrika, S. 2004, Space Science Reviews, 12, 1 GRAVITY Collaboration et al. 2017a, ApJ, 844, 177 GRAVITY Collaboration et al. 2017b, A&A, 602, L11 Kaper, L. et al. 2006, A&A, 457, 595 Leahy, D. & Kostka, M. 2008, MNRAS, 384, 747 Margon, B. et al. 1979, ApJ, 233, L63 Milgrom, M. 1979, A&A, 78, L9 Waisberg, I. et al. 2019a, A&A, 623, A47; Waisberg, I. et al. 2019b, A&A, 624, A127
31-33 (PDF)
GRAVITY Collaboration
Images at the Highest Angular Resolution with GRAVITY: The Case of η Carinae

DOI:
10.18727/0722-6691/5170
ADS BibCode:
2019Msngr.178...31E
Section:
GRAVITY Science
Author(s)/Affiliation(s):
GRAVITY Collaboration

Abstract:
The main goal of an interferometer is to probe the physics of astronomical objects at the highest possible angular resolution. The most intuitive way of doing this is by reconstructing images from the interferometric data. GRAVITY at the Very Large Telescope Interferometer (VLTI) has proven to be a fantastic instrument in this endeavour. In this article, we describe the reconstruction of the wind-wind collision cavity of the massive binary η Car with GRAVITY across two spectral lines: HeI and Brγ.
References:
Baron, F. & Kloppenborg, B. 2010, Proc. SPIE, 7734, 77344D Buscher, D. F. 1994, Very High Angular Resolution Imaging, IAU Symposium, 158, 91; Clementel, N. et al. 2015a, MNRAS, 450, 1388; Clementel, N. et al. 2015b, MNRAS, 447, 2445; GRAVITY Collaboration 2017, A&A, 602, A94; GRAVITY Collaboration 2018, A&A, 618, 125; Mehner, A. et al. 2010, ApJ, 710, 729; Mehner, A. et al. 2012, ApJ, 751, 73; Madura, T. I. et al. 2012, ApJ, 647, L18; Madura, T. I. et al. 2013, MNRAS, 436, 3820; Sanchez-Bermudez, J. et al. 2018, Experimental Astronomy, 46, 457; Thiébaut, E. 2008, Proc. SPIE, 7013, 701311; van Boekel, R. et al. 2003, A&A, 410, L37; Weigelt, G. et al. 2007, A&A, 464, 87; Weigelt, G. et al. 2016, A&A, 594, A106
34-35 (PDF)
Wittkowski, M. et al.
Precision Monitoring of Cool Evolved Stars: Constraining Effects of Convection and Pulsation

DOI:
10.18727/0722-6691/5171
ADS BibCode:
2019Msngr.178...34W
Section:
GRAVITY Science
Author(s)/Affiliation(s):
Wittkowski, M.; Bladh, S.; Chiavassa, A.; de Wit, W.-J.; Eriksson, K.; Freytag, B.; Haubois, X.; Höfner, S.; Kravchenko, K.; Paladini, C.; Paumard, T.; Rau, G.; Wood, P.R.
AA(ESO) AB(Uppsala University, Department of Physics and Astronomy, Sweden) AC(Université Côte d’Azur, Laboratoire Lagrange, Nice, France) AD(ESO) AE(Uppsala University, Department of Physics and Astronomy, Sweden) AF(Uppsala University, Department of Physics and Astronomy, Sweden) AG(ESO) AH(Uppsala University, Department of Physics and Astronomy, Sweden) AI(ESO) AJ(ESO) AK(LESIA, Observatoire de Paris, Meudon, France) AL(NASA, Goddard Space Flight Center, Greenbelt, USA; Catholic University of America, Department of Physics, Washington, DC, USA) AM(Research School of Astronomy and Astrophysics, ANU, Canberra, Australia)
Abstract:
Mass loss from cool evolved stars is an important ingredient of the cosmic matter cycle, enriching the Universe with newly formed elements and dust. However, physical processes that are not considered in current models represent uncertainties in our general understanding of mass loss. Time-series of interferometric data provide the strongest tests of dynamical processes in the atmospheres of these stars. Here, we present a pilot study of such measurements obtained with the GRAVITY instrument on the Very Large Telescope Interferometer.
References:
Airapetian, V. et al. 2010, ApJ, 723, 1210; Arroyo-Torres, B. et al. 2015, A&A, 575, A50; Bladh, S. et al. 2013, A&A, 553, A20; Bladh, S. et al. 2015, A&A, 575, A105; Bladh, S. et al. 2019, A&A, 626, A100; Cranmer, S. R. & Saar, S. H. 2011, ApJ, 741, 54; Freytag, B. et al. 2012, JCoPh, 231, 919 Freytag, B. et al. 2017, A&A, 600, A137; GRAVITY Collaboration 2017, A&A, 602, A94; Höfner, S. et al. 2016, A&A, 594, A108; Höfner, S. & Olofsson, H. 2018, A&ARv, 26, 1; Höfner, S. & Freytag, B. 2019, A&A, 623, A158 Ireland, M. et al. 2008, MNRAS, 391, 1994; Ireland, M. et al. 2011, MNRAS, 418, 114; Kravchenko, K. et al. 2018, A&A, 610, A29; Kravchenko, K. et al. 2019, A&A, 632, A28; Rau, G. et al. 2019, ApJ, 882, 37; Steiner, O. et al. 2014, PASJ, 66, S5; Josselin, E. & Plez, B. 2007, A&A, 469, 671; Wittkowski, M. et al. 2018, A&A, 613, L7; Yasuda, Y. et al. 2019, ApJ, 879, 77
36-38 (PDF)
GRAVITY Collaboration
Multiple Star Systems in the Orion Nebula

DOI:
10.18727/0722-6691/5172
ADS BibCode:
2019Msngr.178...36E
Section:
GRAVITY Science
Author(s)/Affiliation(s):
GRAVITY Collaboration

Abstract:
GRAVITY observations reveal that most massive stars in the Orion Trapezium cluster live in multiple systems. Our deep, milliarcsecond-resolution interferometry fills the gap at 1–100 astronomical units (au), which is not accessible to traditional imaging and spectroscopy, but is crucial to uncovering the mystery of high-mass star formation.The new observations find a significantly higher companion fraction than earlier studies of mostly OB associations. The observed distribution of mass ratios declines steeply with mass and follows a Salpeter power-law initial mass function. The observations therefore exclude stellar mergers as the dominant formation mechanism for massive stars in Orion.
References:
Bate, M. R., Bonnell, I. A. & Bromm, V. 2002, MNRAS, 336, 705; Bonnell, I. A. & Bate, M. R. 2005, MNRAS, 362, 915; Clarke, C. J. 2001, The Formation of Binary Stars, IAU Symposium, 200, 346; Close, L. M. et al. 2013, ApJ, 774, 13; Duchêne, G. & Kraus, A. 2013, ARA&A, 51, 269; GRAVITY Collaboration 2017, A&A, 602, A94; GRAVITY Collaboration 2018, A&A, 620, A116; Grellmann, R. et al. 2013, A&A, 550, 531; Kroupa, P. 2001, MNRAS, 322, 231; Moeckel, N. & Clarke, C. J. 2011, MNRAS, 410, 2799; Reid, M. J. et al. 2014, ApJ, 783, 130; Salpeter, E. E. 1955, ApJ, 121, 161; Tan, J. C. et al. 2014, Protostars and Planets VI, ed. Beuther, H. et al., (Tucson: Univ. of Arizona), 149
38-40 (PDF)
GRAVITY Collaboration
Probing the Discs of Herbig Ae/Be Stars at Terrestrial Orbits

DOI:
10.18727/0722-6691/5173
ADS BibCode:
2019Msngr.178...38E
Section:
GRAVITY Science
Author(s)/Affiliation(s):
GRAVITY Collaboration

Abstract:
More than 4000 exoplanets are known to date in systems that differ greatly from our Solar System. In particular, inner exoplanets tend to follow orbits around their parent star that are much more compact than that of Earth. These systems are also extremely diverse, covering a range of intrinsic properties. Studying the main physi- cal processes at play in the innermost regions of the protoplanetary discs is crucial to understanding how these planets form and migrate so close to their host. With GRAVITY, we focused on the study of near-infrared emission of a sample of young intermediate- mass stars, the Herbig Ae/Be stars.
References:
ALMA Partnership et al. 2015, ApJ, 808, L1; Beuzit, J.-L. et al. 2019, A&A, 631, A155; Gorti, U. et al. 2009, ApJ, 705, 1237; Dullemond, C. & Dominik, C. 2004, A&A, 421, 1075; GRAVITY Collaboration et al. 2019, A&A, 632, A53; Le Bouquin, J.-B. et al. 2011, A&A, 935, A67; Lopez, B. et al. 2018, SPIE, 10701, 107010Z Maaskant, K. M. et al. 2013, A&A, 555, A64; Meeus, G. et al. 2001, A&A, 365, 476; Menu, J. et al. 2015, A&A, 581, A107; Vioque, M. et al. 2018, A&A, 620, A128; Zhang, S. et al. 2018, ApJ, 869, L47
40-42 (PDF)
GRAVITY Collaboration
Spatially Resolving the Inner Gaseous Disc of the Herbig Star 51 Oph through its CO Ro-vibration Emission

DOI:
10.18727/0722-6691/5174
ADS BibCode:
2019Msngr.178...40E
Section:
GRAVITY Science
Author(s)/Affiliation(s):
GRAVITY Collaboration

Abstract:
Near-infrared interferometry gives us the opportunity to spatially resolve the circumstellar environment of young stars at sub-astronomical-unit (au) scales, which a standalone telescope could not reach. In particular, the sensitivity of GRAVITY on the VLTI allows us to spatially resolve the CO overtone emission at 2.3 microns. In this article, we present a new method of using the model of the CO spectrum to reconstruct the differential phase signal and extract the geometry and size of the emitting region.
References:
Berthoud, M. G. et al. 2007, ApJ, 660, 461; Dunkin, S. K., Barlow, M. J. & Ryan, S. G. 1997, MNRAS, 286, 604; Gaia Collaboration et al. 2018, A&A, 616, A1; Lindegren, L. et al. 2016, A&A, 595, A4; Muzerolle, J. et al. 2004, ApJ, 617, 406; Tatulli, E. et al. 2008, A&A, 464, 55; Testi, L. et al. 2014, Protostars and Planets VI, ed. Beuther, H. et al., (Tucson: University of Arizona Press), 339; Thi, W. F. et al. 2005, A&A, 430, L61
43-44 (PDF)
Davies, C.L. et al.
Spatially Resolving the Innermost Regions of the Accretion Discs of Young, Low-Mass Stars with GRAVITY

DOI:
10.18727/0722-6691/5175
ADS BibCode:
2019Msngr.178...43D
Section:
GRAVITY Science
Author(s)/Affiliation(s):
Davies, C.L.; Hone, E.; Kluska, J.; Kreplin, A.
AA(Astrophysics Group, University of Exeter, UK) AB(Astrophysics Group, University of Exeter, UK) AC(Instituut voor Sterrenkunde (IvS), KU Leuven, Belgium) AD(Astrophysics Group, University of Exeter, UK)
Abstract:
Low-mass, young stars — the T Tauri stars — make up the majority of young stellar objects. They have been relatively unexplored with optical long baseline interferometry owing to the cooler temperatures of their stellar photospheres which makes them fainter and more compact than the more frequently studied intermediate mass, young stars — the Herbig Ae/Be stars. With its greater flux sensitivity, GRAVITY has allowed us to explore T Tauri stars at high angular resolution in unprecedented detail. Here we present highlights from two such studies.
References:
Bacciotti, F. et al. 2018, ApJL, 865, 12; Davies, C. L. et al. 2018, MNRAS, 474, 5406; Donati, J.-F. et al. 2010, MNRAS, 409, 1347; Gomez de Castro, A. I. 1993, ApJL, 412, 43; Hill, C. A. et al. 2019, MNRAS, 484, 5810; Lazareff, B. et al. 2017, A&A, 599, 85; McGroarty, F., Ray, T. P. & Froebrich, D. 2007, A&A, 467, 1197; Rostopchina, A. N. et al. 2007, Astron. Rep., 51, 55
45-46 (PDF)
Dong, S. et al.
When the Stars Align — the First Resolved Microlensed Images

DOI:
10.18727/0722-6691/5176
ADS BibCode:
2019Msngr.178...45D
Section:
GRAVITY Science
Author(s)/Affiliation(s):
Dong, S.; Mérand, A.; Delplancke-Ströbele, F.; Gould, A.; Zang, W.
AA(Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing, China) AB(ESO) AC(ESO) AD(Max Planck Institute for Astronomy, Heidelberg, Germany; Korea Astronomy and Space Science Institute, Daejon, Republic of Korea; Department of Astronomy, Ohio State University, Columbus, USA) AE(Department of Astronomy and Tsinghua Centre for Astrophysics, Tsinghua University, Beijing, China)
Abstract:
Using GRAVITY, we have resolved the two images of a microlensed source star for the first time, more than a century after Einstein first predicted that such image splitting could be caused by the gravity of another (lens) star along the line of sight to the source. We have measured the angular Einstein radius (almost exactly half the image separation) to be 1.87 milliarcseconds, with a precision of just 30 microarcseconds. The measurement also yields the direction of the relative motion of the lens with respect to the source. These results, combined with other, so-called microlens parallax measurements, yield the lens mass and distance. While this lens is an ordinary luminous star, the same technique could be applied in the future to measure the mass and distance of completely dark objects, such a black hole. In fact, while black holes in binaries have been found from X-ray and LIGO gravitational-wave observations, and are likely to be found in the future by Gaia astrometry, gravitational microlensing is the only known way to find isolated black holes. Our detection using GRAVITY on the VLTI opens the path to such measurements of isolated black hole masses.
References:
Abbott, B. et al. 2016, Phys. Rev. Lett., 116, 1102; Einstein, A. 1936, Science, 84, 506; Dong, S. et al. 2019, ApJ, 871, 70; Delplancke, F. et al. 2001, A&A, 375, 701; Fukui, A. et al. 2019, AJ, 158, 206; Gould, A. 2000, ApJ, 535, 928; GRAVITY Collaboration 2017, A&A, 602, 94; Nucita, A. et al. 2018, MNRAS, 476, 2962; Zang, W. et al. 2019, submitted to ApJ, arXiv:1912.00038
47-49 (PDF)
GRAVITY Collaboration
Hunting Exoplanets with Single-Mode Optical Interferometry

DOI:
10.18727/0722-6691/5177
ADS BibCode:
2019Msngr.178...47E
Section:
GRAVITY Science
Author(s)/Affiliation(s):
GRAVITY Collaboration

Abstract:
The GRAVITY instrument was primarily conceived for imaging and astrometry of the Galactic centre. However, its sensitivity and astrometric capabilities have also enabled interferometry to reach a new domain of astrophysics: exoplanetology. In March 2019, the GRAVITY collaboration published the first spectrum and astrometry of an exoplanet obtained by optical interferometry. In this article, we show how this observation is paving the way to even more exciting discoveries — finding new planets, and characterising their atmospheres.
References:
Alonso-Floriano, F. J. et al. 2019, A&A, 629A, 110; Boccaletti, A., Thalmann, C. & Lagrange, A. M. 2015, Nature, 526, 230 Boccaletti, A. et al. 2018, A&A, 614A, 52B Gauchet, L. et al. 2016, A&A, 595A, 31G GRAVITY Collaboration et al. 2019, A&A, 623, 11 Greenbaum, A. Z. et al. 2018, AJ, 155, 226G Mollière, P. & Snellen, I. A. G. 2019, A&A, 622A, 139; Öberg, K. I., Murray-Clay, R. & Bergin, E. A. 2011, ApJ, 743L, 16O Wertz, O. et al. 2017, A&A, 598, A83

Astronomical News

51-56 (PDF)
Christensen, L.L., Horálek, P.
Light Phenomena Over ESO’s Observatories IV: Dusk and Dawn

DOI:
10.18727/0722-6691/5178
ADS BibCode:
2019Msngr.178...51C
Section:
Astronomical News
Author(s)/Affiliation(s):
Christensen, L.L.; Horálek, P.
AA(ESO) AB(ESO)
Abstract:
Several interesting atmospheric phenomena take place during dusk and dawn, associated with the setting and rising of the Sun and Moon. Here, the most important of these are discussed in the context of ESO observing sites. This is the fourth article in a series about a range of light phenomena that can be experienced at ESO observatories
References:
Christensen, L. L. et al. 2016, The Messenger, 163, 40; Gladysheva, O. 2007, Solar System Research, 41, 314; Horálek, P. et al. 2016a, The Messenger, 163, 43; Horálek, P. et al. 2016b, The Messenger, 164, 45; Kundt, W. 2001, Current Science, 81, No. 4, 399; Lee, R. L. 2015, Applied Optics, Vol. 54, Issue 4, B194; Lehn, W. H. 1979, Journal of the Optical Society of America, Vol. 69, Issue 5, 776; Lehn, W. H. & German, B. A. 1981, Applied Optics, Vol. 20, No. 12, 2043; Lock, J. A. 2015, Applied Optics, Vol. 54, Issue 4, B54; Longo, G. 2007, Comet/Asteroid Impact and Human Society, 303; Lynch, L. K. & Livingston, W. 2001, Color and Light in Nature, (Cambridge: Cambridge University Press) Minnaert, M. G. J. 1993, Light and Color in the Outdoor, (New York: Springer) Moreno, H. et al. 1965, Science, 148, 364; Nussenzveig, H. M. 2012, Scientific American, 306, 68; Shackleton, E. H. 1919, South: The Story of Shackleton’s 1914–1917; Expedition, (London: William Heinemann) de Veer, G. 1876, The Three Voyages of William Barents to the Arctic Regions: 1594, 1595; and 1596, (London: Forgotten Books, 2017) Waythomas, C. W. et al. 2010, Journal of Geophysical Research, 115, B12; Zieger, P. et al. 2013, Atmospheric Chemistry and Physics, 13, 10609
57-60 (PDF)
Manara, C.F. et al.
The ESO Summer Research Programme 2019

DOI:
10.18727/0722-6691/5179
ADS BibCode:
2019Msngr.178...57M
Section:
Astronomical News
Author(s)/Affiliation(s):
Manara, C.F.; Harrison, C.; Zanella, A.; Agliozzo, C.; Anderson, R.I.; Arrigoni Battaia, F.; Belfiore, F.; van der Burg, R.; Chen, C.-C.T.C.; Facchini, S.; Fensch, J.; Jethwa, P.; Kokotanekova, R.; Lelli, F.; Miotello, A.; Pala, A.; Querejeta, M.; Rubin, A.; Wylezalek, D.; Watkins, L.
AA(ESO) AB(ESO) AC(ESO) AD(ESO) AE(ESO) AF(Max Planck Institute for Astrophysics, Garching, Germany) AG(ESO) AH(ESO) AI(ESO) AJ(ESO) AK(ESO) AL(ESO) AM(ESO) AN(ESO) AO(ESO) AP(ESO) AQ(ESO) AR(ESO) AS(ESO) AT(ESO)
Abstract:
For the first time ever, a summer research programme was organised at ESO Garching. Seven students, enrolled in universities all around the world, were selected from more than 300 applicants. They each spent six weeks from June to August 2019 carrying out a scientific project under the supervision of teams of ESO Fellows and postdocs, while engaging in the scientific life of ESO. The students carried out research in different fields of astronomy, from comets to high-redshift galaxies and from pulsating stars to protoplanetary discs. In this report we present the programme and describe the main outcomes of the projects.
61-63 (PDF)
Boffin, H.M.J. et al.
Report on the ESO Workshop "Artificial Intelligence in Astronomy"

DOI:
10.18727/0722-6691/5180
ADS BibCode:
2019Msngr.178...61B
Section:
Astronomical News
Author(s)/Affiliation(s):
Boffin, H.M.J.; Jerabkova, T.; Mérand, A.; Stoehr, F.
AA(ESO) AB(ESO; Helmholtz-Institut für Strahlen- und Kernphysik, Universität Bonn, Germany; Astronomical Institute, Charles University, Prague, Czech Republic) AC(ESO) AD(ESO)
Abstract:
In July 2019, ESO hosted one of the first international workshops on artificial intelligence in astronomy, with the double aims of presenting the current landscape of methods and applications in astronomy and preparing the next generations of astronomers to embark on these fields. In addition to a wide range of review and contributed talks, as well as posters, the ~ 150 attendees could learn the techniques through several dedicated tutorials.
References:
Adorf, H.-M. 1991, The Messenger, 63, 69; Baron, D. 2019, arXiv: 1904.07248; Griffin, R. F. 2014, The Observatory, 134, 109; Stoehr, F. 2019, ASPC, 387, 523
63-66 (PDF)
Vieser, W. et al.
Report on the IAU Conference "Astronomy Education — Bridging Research & Practice"

DOI:
10.18727/0722-6691/5181
ADS BibCode:
2019Msngr.178...63V
Section:
Astronomical News
Author(s)/Affiliation(s):
Vieser, W.; Johnston, T.; Salimpour, S.
AA(ESO) AB(ESO) AC(Deakin University, Burwood, Australia; Edith Cowan University, Joondalup, Australia)
Abstract:
Astronomy education contributes to the spread of scientific literacy among successive generations, helping to attract students into science, technology, engineering and mathematics (STEM) subjects and potentially also into astronomy research. Although the field of research into astronomy education has grown significantly, the sustainable transfer from research institutes into the classroom is lacking. The goal of this conference was to bring together all stakeholders — teachers, educators and researchers — to communicate and discuss their various needs in order to effectively bridge the gap between astronomy education research and its practical application.
67-70 (PDF)
Kokotanekova, R. et al.
Fellows at ESO

DOI:
10.18727/0722-6691/5182
ADS BibCode:
2019Msngr.178...67E
Section:
Astronomical News
Author(s)/Affiliation(s):
Kokotanekova, R.; Facchini, S.; Hartke, J.
AA(ESO) AB(ESO) AC(ESO)
70-70 (PDF)
ESO
In Memoriam Cristian Herrera González

ADS BibCode:
2019Msngr.178...70E
Section:
Astronomical News
Author(s)/Affiliation(s):
ESO

71-71 (PDF)
ESO
Personnel Movements

ADS BibCode:
2019Msngr.178...71E
Section:
Astronomical News
Author(s)/Affiliation(s):
ESO

71-71 (PDF)
Patat, F.
Erratum: The Distributed Peer Review Experiment

DOI:
10.18727/0722-6691/5183
ADS BibCode:
2019Msngr.178Q..71E
Author(s)/Affiliation(s):
Patat, F.
AA(ESO)