Messenger 193 | 2024
ESO–SKAO Synergies
5-8 (PDF)
SKAO, SKA Precursors/pathfinders and ESO Facilities
DOI:
10.18727/0722-6691/5361
ADS BibCode:
2024Msngr.193....5B
Section:
ESO–SKAO Synergies
Author(s)/Affiliation(s):
Bonaldi, A.; Zwaan, M.; Best, P.; Broderick, J.; Goedhart, S.; Mahony, E.
AA(SKA Observatory, Jodrell Bank, Macclesfield, UK) AB(ESO) AC(Institute for Astronomy, University of Edinburgh, Royal Observatory, UK) AD(SKA Observatory, Kensington, Australia; CSIRO Space and Astronomy, Bentley, Australia) AE(South African Radio Astronomy Observatory, Cape Town, South Africa) AF(Australia Telescope National Facility, CSIRO Space and Astronomy, Epping, Australia)
Abstract:
In The Messenger 192 a short report was published on the ESO–SKAO workshop Coordinated Surveys of the Southern Sky, which was held at ESO in Garching in early 2023. An important goal of this workshop was to publish a collection of articles that describe in some detail what existing synergetic science would be possible with well-planned coordinated surveys using ESO and SKAO facilities. The other four articles in this edition of The Messenger, covering respectively the Galaxy, galaxy formation and evolution, cosmology, and the epoch of reionisation and cosmic dawn, present such synergies and promising ways forward, and serve as references for ESO–SKAO coordinated surveys. By way of introduction, this article describes the SKAO and SKA precursor/pathfinder facilities and also briefly highlights the current and future ESO instrumentation that will be of particular importance for such coordinated surveys of the southern sky.
References:
Benthem, P. et al. 2021, A&A, 655, A5; Best, P. N. et al. 2023, MNRAS, 523, 1729; Beardsley, A. P. et al. 2019, PASA, 36, e050; Cirasuolo, M. et al. 2020, The Messenger, 180, 10; Cotton, W. D. et al. 2024, MNRAS, 529, 2443; de Gasperin, F. et al. 2023, A&A, 673, A165; de Jong, R. S. et al. 2019, The Messenger, 175, 3; Duchesne, S. W. et al. 2024, PASA, 41, e003; Goedhart, S. et al. 2024, MNRAS, 531, 649; Hale, C. L. et al. 2021, PASA, 38, e058; Hammer, F. et al. 2021, The Messenger, 182, 33; Hardcastle, M. J. et al. 2023, A&A, 678, A151; Heywood, I. et al. 2022, ApJ, 925, 165; Hotan, A. W. et al. 2021, PASA, 38, e009; Hurley-Walker, N. et al. 2017, MNRAS, 464, 1146; Labate, M. G. et al. 2022, JATIS, 8, 011024; Macario, G. et al. 2022, JATIS, 8, 011014; Morrison, I. S. et al. 2023, PASA, 40, e019; Sanidas, S. et al. 2019, A&A, 626, A104; Shimwell, T. W. et al. 2022, A&A, 659, A1; Smith, D. J. B. et al. 2016, SF2A-2016, 271; Swart,G. P., Dewdney, P. E. & Cremonini, A. 2022, JATIS, 8, 011021; Tingay, S. J. et al. 2013, PASA, 30, e007; van Haarlem, M. P. et al. 2013, A&A, 556, A2; Wayth, R. B. et al. 2015, PASA, 32, e025; Wayth, R. et al. 2017, PASA, 34, e034; Wayth, R. B. et al. 2018, PASA, 35, e033; Wayth, R. et al. 2022, JATIS, 8, 011010; Williams, W. L. et al. 2019, A&A, 622, A2
9-13 (PDF)
ESO–SKAO Coordinated Surveys: the Galaxy
DOI:
10.18727/0722-6691/5362
ADS BibCode:
2024Msngr.193....9B
Section:
ESO–SKAO Synergies
Author(s)/Affiliation(s):
Breen, S.; Schödel, R.; Ilee, J.; Hoare, M.; Thompson, M.; Bianchi, E.; Codella, C.; Podio, L.; Forbrich, J.; Ingallinera, A.; Bordiu, C.; Brunthaler, A.
AA(SKA Observatory, Jodrell Bank, Macclesfield, UK) AB(Instituto de astrofísica de Andalucía – CSIC, Spain) AC(School of Physics & Astronomy, University of Leeds, UK) AD(School of Physics & Astronomy, University of Leeds, UK) AE(School of Physics & Astronomy, University of Leeds, UK) AF(Excellence Cluster ORIGINS, Germany) AG(INAF–Arcetri Astrophysical Observatory, Italy) AH(INAF–Arcetri Astrophysical Observatory, Italy) AI(Centre for Astrophysics Research, University of Hertfordshire, UK) AJ(INAF–Catania Astrophysical Observatory, Italy) AK(INAF–Catania Astrophysical Observatory, Italy) AL(Max Planck Institute for Radio Astronomy, Germany)
Abstract:
Our Galaxy occupies a special place in astrophysics, because it allows us to observe fundamental phenomena at least four orders of magnitude fainter and at physical scales at least 100 times smaller than in any other comparable galaxy. Observations of the Milky Way therefore provide the fundamental data for our understanding of processes such as star and planet formation, the physics of accretion and ejection, interstellar chemistry or the interaction of the interstellar medium, stars and a massive black hole as it occurs in galaxy nuclei. In this article we discuss accretion and ejection in star formation, carbon chemistry, unidentified radio sources in the Milky Way, Galactic structure, and stellar remnants in the Galactic centre as exemplary science cases where multiwavelength observations with the SKAO and ESO facilities can make a profound impact. We also briefly discuss the nature of the coordinated observations and any requirements that we consider necessary to carry them out successfully.
References:
Beuther, H. et al. 2016, A&A, 595, A32; Bianchi, E. et al. 2023, ApJ, 944, 208; Brunthaler, A. et al. 2021, A&A, 651, A85; Bouvier, M. et al. 2022, ApJ, 929, 10; Campbell, H. et al. 2023, ApJ, 942, 22; Cavallaro, F. et al. 2018, MNRAS, 473, 1685; Ceccarelli, C. et al. 2023, ASP Conference Series, 534, 379; Cernicharo, J. et al. 2021, A&A, 656, L21; Chojnowski, S. D. et al. 2017, AJ, 153, 174; Curone, P. et al. 2023, A&A, 677, A118; Fairlamb, J. R. et al. 2017, MNRAS, 464, 4721; Favre, C. et al. 2018, ApJ, 859, 136; Feldmeier-Krause, A. et al. 2015, A&A, 584, A2; Fontani, F. et al. 2017, A&A, 605, A57; Generozov, A. et al. 2018, MNRAS, 478, 4030; Goedhart, S. et al. 2024, MNRAS, 531, 649; GRAVITY Collaboration 2020, A&A, 636, L5; Hoare, M. et al. 2015, AASKA14, 115; Hailey, C. J. et al. 2018, Nature, 556, 70; Henshaw, J. D. et al. 2023, ASP Conference Series, 534, 83; Kruijssen, J. M. D. & Longmore, S. N. 2013, MNRAS, 435, 2598; Launhardt, R., Zylka, R. & Mezger, P. G. 2002, A&A, 384, 112; Lichtenberg, T. et al. 2019, Nat. Ast. 3, 307; López-Sepulcre, A. at al. 2013, A&A, 556, A62; Macías, E. et al. 2016, ApJ, 829, 1; McGuire, B. A. et al. 2020, ApJL, 900, L10; Mumma, M. J. & Charnley, S. B. 2011, ARA&A, 49, 471; Norris, R. P. et al. 2021, PASA, 38, e003; Reid, M. J. et al. 2019, ApJ, 885, 131; Russell, D. M. et al. 2006, MNRAS, 371, 1334; Schödel, R. et al. 2014, A&A, 566, A47; Schödel, R. et al. 2020, A&A, 641, A102; Sakai, N. & Yamamoto, S. 2013, Chemical Reviews, 113, 8981; Tobin, J. J. et al. 2019, ApJ, 886, 6; Umana, G. et al. 2015, MNRAS, 454, 902; Wolk, S. J. et al. 2018, AJ, 155, 99; Yusef-Zadeh, F. et al. 2015, ApJ, 809, 10; Zhu, Z., Li, Z. & Morris, M. R. 2018, ApJS, 235, 26
14-19 (PDF)
An ESO–SKAO Synergistic Approach to Galaxy Formation and Evolution Studies
DOI:
10.18727/0722-6691/5363
ADS BibCode:
2024Msngr.193...14P
Section:
ESO–SKAO Synergies
Author(s)/Affiliation(s):
Prandoni, I.; Sargent, M.; Adams, E.A.K.; Catinella, B.; Cirasuolo, M.; Emsellem, E.; Hopkins, A.; Maddox, N.; Mainieri, V.; Wisnioski, E.; Colless, M.
AA(INAF–Institute of Radio Astronomy, Bologna, Italy) AB(International Space Science Institute, Bern, Switzerland) AC(ASTRON, the Netherlands Institute for Radio Astronomy, Dwingeloo, the Netherlands; Kapteyn Astronomical Institute, University of Groningen, the Netherlands) AD(International Centre for Radio Astronomy Research, The University of Western Australia, Crawley, Australia; Australian Research Council Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D), Australia) AE(ESO) AF(ESO; ENS de Lyon, CNRS, Lyon Astrophysics Research Centre, University of Lyon, France) AG(School of Mathematical and Physical Sciences, Macquarie University, New South Wales, Australia) AH(School of Physics, H.H. Wills Physics Laboratory, University of Bristol, UK) AI(ESO) AJ(Research School of Astronomy and Astrophysics, Australian National University, Canberra, Australia; Australian Research Council Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D), Australia) AK(Research School of Astronomy and Astrophysics, Australian National University, Canberra, Australia)
Abstract:
We highlight the potential benefits of a synergistic use of SKAO and ESO facilities for galaxy evolution studies, focusing on the role that ESO spectroscopic surveys can play in supporting next-generation radio continuum and atomic hydrogen (HI) surveys. More specifically we illustrate the role that currently available or soon to be operational ESO multiplex spectrographs can play for three classes of projects: large/deep redshift survey campaigns, integral field unit/Atacama Large Millimeter/submillimeter Array (IFU/ALMA) surveys of selected regions of sky, and IFU/ALMA follow-ups of selected samples. We conclude with some general recommendations for an efficient joint exploitation of ESO–SKAO surveys.
References:
Bacon, R. et al. 2024, arXiv:2405.12518; Barsanti, S. et al. 2022, MNRAS, 516, 3569; Barsanti, S. et al. 2023, MNRAS, 526, 1613; Birkin, J. E. et al. 2024, MNRAS, 531, 61; Bonaldi, A. et al. 2023, MNRAS, 524, 993; Brown, T. et al. 2017, MNRAS, 466, 1275; Carpenter, J. et al. 2022, ALMA Memo 621; Catinella, B. et al. 2023, MNRAS, 519, 1098; Chowdhury, A., Nissim, K & Chengalur, J. N. 2022, ApJLett, 941, L6; Cirasuolo, M. et al. 2020, The Messenger, 180, 10; Della Bruna, L. et al. 2022, A&A, 666, A29; Duncan, K. et al. 2023, The Messenger, 190, 25; Emsellem, E. et al. 2022, A&A, 659, A191; Epinat, B. et al. 2024, A&A, 683, A205; Girdhar, A. et al. 2022, MNRAS, 512, 1608; de Jong, R. S. et al. 2019, The Messenger, 175, 3; Hassani, H. et al. 2024, ApJS, 271, 2; Lee, J. C. et al. 2022, ApJS, 258, 10; Lee, J. C. et al. 2023, ApJL, 944, 17; Leroy, A. K. et al. 2021, ApJS, 257, 43; Mainieri, V. et al. 2024, arXiv:2403.05398; Prandoni, I. & Seymour, N. 2015, PoS(AASKA14), 215, 67; Sinigaglia, F. et al. 2022, ApJL, 935, L13; Stark, D. V. et al. 2021, MNRAS, 503, 1345; Staveley-Smith, L. & Oosterloo, T. 2015, PoS(AASKA14), 215, 167; Tudorache, M. N. et al. 2022, MNRAS, 513, 2168; Walter, F. et al. 2008; AJ, 136, 2563; Welker, C. et al. 2020, MNRAS, 491, 2864
20-23 (PDF)
Cosmology with ESO–SKAO Synergies
DOI:
10.18727/0722-6691/5364
ADS BibCode:
2024Msngr.193...20S
Section:
ESO–SKAO Synergies
Author(s)/Affiliation(s):
Santos, M.G.; Camera, S.; Chen, Z.; Cunnington, S.; Fonseca, J.
AA(Department of Physics & Astronomy, University of the Western Cape, Cape Town, South Africa; South African Radio Astronomy Observatory, Cape Town, South Africa) AB(Department of Physics, University of Turin, Italy; National Institute for Nuclear Physics, Turin, Italy; INAF–Turin Astrophysical Observatory, Italy; Department of Physics & Astronomy, University of the Western Cape, Cape Town, South Africa) AC(Institute for Astronomy, Royal Observatory, University of Edinburgh, UK) AD(Jodrell Bank Centre for Astrophysics, Department of Physics & Astronomy, University of Manchester, UK) AE(Institute of Astrophysics and Space Science, University of Porto, Portugal; Department of Physics & Astronomy, University of the Western Cape, Cape Town, South Africa)
Abstract:
We discuss the possible synergies for cosmology between SKAO and ESO facilities, focusing on the combinations SKA-Mid with the Multi-Object Spectrograph Telescope (4MOST) instrument built for ESO’s Visible and Infrared Survey Telescope for Astronomy (VISTA) and SKA-Low with ESO's Extremely Large Telescope (ELT) multi-object spectrograph MOSAIC. Combining multiple tracers allows for tackling systematics and lifting parameter degeneracies. It will play a crucial role in the pursuit of precision cosmology.
References:
SKA Cosmology Science Working Group 2020, PASA, 37, e007; Camera, S. et al. 2012, MNRAS, 427, 2079; Carucci, I. P., Villaescusa-Navarro, F. & Viel, M 2017, JCAP, 04, 001; Cunnington, S. et al. 2023, MNRAS, 518, 6262; Celoria, M. & Matarrese, S. 2018, Proc. Int. Sch. Phys. Fermi, 200, 179; Chen, Z. & Pourtsidou, A. 2024, arXiv: 2405.05414; DES Collaboration (Abbott, T. M. C. et al.) 2022, Phys. Rev. D, 105, 023520; DESI Collaboration (Adame, A. G. et al.) 2024, arXiv:2404.03002; Di Valentino, E., Saridakis, E. & Riess, A. 2022, Nature Astronomy, 6, 1353; Euclid Collaboration (Mellier, Y. et al.) 2024, arXiv:2405.13491; Ferramacho, L. D. et al. 2014, MNRAS, 442, 2511; Fonseca, J. et al. 2015, ApJL, 812, L22; Gomes, Z. et al. 2020, MNRAS, 492, 1513; Harrison, I., Lochner, M. & Brown, M. L. 2017, arXiv:1704.08278; Izević, Z. et al. 2019, ApJ, 873, 111; Japelj, J. et al. 2019, A&A, 632, A94; McQuinn, M. & White, M. 2011, MNRAS, 415, 2257; MeerKLASS Collaboration et al. 2024, arXiv:2407.21626; Mroczkowski, T. et al. 2024, arXiv:2402.18645; Planck Collaboration (Aghanim, N. et al.) 2020, A&A, 641, A6; Raccanelli, A. et al. 2012, MNRAS, 424, 801; Richard J. et al. 2019, The Messenger, 175, 50; Rocha, B. A. R. & Martins, C. J. A. P. 2023, MNRAS, 518, 2853; Santos, M. et al. 2015, PoS (AASKA14), 19; Wang, J. et al. 2021, MNRAS, 505, 3698
24-29 (PDF)
ESO–SKAO Synergies for the Epoch of Reionisation and Cosmic Dawn
DOI:
10.18727/0722-6691/5365
ADS BibCode:
2024Msngr.193...24M
Section:
ESO–SKAO Synergies
Author(s)/Affiliation(s):
Mesinger, A.; Ciardi, B.; Davies, J.E.; Gagnon-Hartman, S.; D’Odorico, V.
AA(Scuola Normale Superiore, Pisa, Italy) AB(Max Planck Institute for Astrophysics, Garching, Germany) AC(Scuola Normale Superiore, Pisa, Italy) AD(Scuola Normale Superiore, Pisa, Italy) AE(INAF–Trieste Astronomical Observatory, Italy; Scuola Normale Superiore, Pisa, Italy)
Abstract:
Mapping out the first billion years using the 21-cm line with the Square Kilometre Array (SKA) will revolutionise our understanding of the cosmic dawn, reionisation and the galaxies that drove these milestones. However, synergies with other telescopes in the form of cross-correlations will be fundamental in making and confirming initial, low signal-to-noise claims of a detection. Participants in the 2023 ESO–SKAO workshop discussed such synergies for Epoch of Reionisation (EoR) and Cosmic Dawn (CD) science. Here we highlight some of the most promising candidates for cross-correlating SKA EoR/CD observations with ESO instruments such as the Multi-Object Optical and Near-infrared Spectrograph (MOONS), the MOSAIC multi-object spectrograph, and the ArmazoNes high Dispersion Echelle Spectrograph (ANDES).
References:
Abdurashidova, Z. et al. 2022, ApJ, 925, 221; Amiri, M. et al. 2024, ApJ, 963, 23; Bhagwat, A. et al. 2022, MNRAS, 517, 2331; Bosman, S. E. I. et al. 2022, MNRAS, 514, 55; Crites, A. T. et al. 2014, Proc. SPIE, 9153, 91531W Eide, M. B. et al. 2020, MNRAS, 498, 6083; Heneka, C. & Cooray, A. 2021, MNRAS, 506, 1573; Heneka, C. & Mesinger, A. 2020, MNRAS, 496, 581; Hutter, A. et al. 2017, ApJ, 836, 176; Hutter, A. et al. 2023, MNRAS, 525, 1664; Klaassen, P. D. et al. 2020, Proc. SPIE, 11445, 114452F Kovetz, E. D. et al. 2017, arXiv:1709.09066; Kubota, K. et al. 2020, MNRAS, 494, 3131; Lagache, G., Cousin, M. & Chatzikos, M. 2018, A&A, 609, A130; La Plante, P., Sipple, J. & Lidz, A. 2022, ApJ, 928, 162; La Plante, P. et al. 2023, ApJ, 944, 59; Ma, Q. et al. 2018a, MNRAS, 476, 4025; Ma, Q. et al. 2018b, MNRAS, 480, 26; Maiolino, R. et al. 2020, The Messenger, 180, 24; Mao, X.-C. 2014, ApJ, 790, 148; Mertens, F. G. et al. 2020, MNRAS, 493, 1662; Mesinger A. (ed.) 2020, The cosmic 21-cm revolution: charting the first billion years of our universe, (Bristol: IOP Publishing) Morales M. F. et al. 2012, ApJ, 752, 137; Moriwaki, K. et al. 2019, MNRAS, 489, 2471; Mroczkowski, T. et al. 2024, arXiv:2402.18645; Pawlik, A. H. et al. 2017, MNRAS, 466, 960; Prelogović, D. & Mesinger, A. 2023, MNRAS, 524, 4239; Qin, Y. et al. 2021, MNRAS, 506, 2390; Sobacchi, E., Mesinger, A. & Greig, B. 2016, MNRAS, 459, 2741; Trott, C. M. et al. 2020, MNRAS, 493, 4711; van Kampen, E. et al. 2024, arXiv:2403.02806; Vrbanec, D. et al. 2020, MNRAS, 492, 4952; Wiersma, R. P. C. et al. 2013, MNRAS, 432, 2615; Yue, B. et al. 2015, MNRAS, 450, 3829
Astronomical Science
31-34 (PDF)
VST-SMASH: the VST Survey of Mass Assembly and Structural Hierarchy
DOI:
10.18727/0722-6691/5366
ADS BibCode:
2024Msngr.193...31T
Section:
Astronomical Science
Author(s)/Affiliation(s):
Tortora, C.; Ragusa, R.; Gatto, M.; Spavone, M.; Hunt, L.; Ripepi, V.; Dall’Ora, M.; Abdurro’uf; Annibali, F.; Baes, M.; Belfiore, F.M.C.; Bellucco, N.; Bolzonella, M.; Cantiello, M.; Dimauro, P.; Kluge, M.; Lelli, F.; Napolitano, N.R.; Nucita, A.; Radovich, M.; Scaramella, R.; Schinnerer, E.; Testa, V.; Unni, A.
AA(INAF–Capodimonte Astronomical Observatory, Naples, Italy) AB(INAF–Capodimonte Astronomical Observatory, Naples, Italy) AC(INAF–Capodimonte Astronomical Observatory, Naples, Italy) AD(INAF–Capodimonte Astronomical Observatory, Naples, Italy) AE(INAF–Arcetri Astrophysical Observatory, Florence, Italy) AF(INAF–Capodimonte Astronomical Observatory, Naples, Italy) AG(INAF–Capodimonte Astronomical Observatory, Naples, Italy) AH(Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, USA) AI(INAF–Bologna Astrophysics and Space Science Observatory, Italy) AJ(Astronomical Observatory, Ghent University, Belgium) AK(INAF–Arcetri Astrophysical Observatory, Florence, Italy) AL(Department of Physics and Astronomy, University of Padua, Italy) AM(INAF–Bologna Astrophysics and Space Science Observatory, Italy) AN(INAF–Abruzzo Astronomical Observatory, Teramo, Italy) AO(INAF–Rome Astronomical Observatory, Italy) AP(Max Planck Institute for Extraterrestrial Physics, Garching, Germany) AQ(INAF–Arcetri Astrophysical Observatory, Florence, Italy) AR(Department of Physics, Federico II University, Naples, Italy) AS(Department of Mathematics and Physics, University of Salento, Italy) AT(INAF–Padua Astronomical Observatory, Italy) AU(INAF–Rome Astronomical Observatory, Italy) AV(Max Planck Institute for Astronomy, Heidelberg, Germany) AW(INAF–Rome Astronomical Observatory, Italy) AX(INAF–Capodimonte Astronomical Observatory, Naples, Italy)
Abstract:
The VLT Survey Telescope Survey of Mass Assembly and Structural Hierarchy (VST-SMASH) aims to detect tidal features and remnants around very nearby galaxies, a unique and essential diagnostic of the hierarchical nature of galaxy formation. Leveraging optimal sky conditions at ESO’s Paranal Observatory, combined with the VST’s multi-band optical filters, VST-SMASH aims to be the definitive survey of stellar streams and tidal remnants in the Local Volume, targeting a low surface-brightness limit of μ ~ 30 mag arcsec–2 in the g and r bands, and μ ~ 28 mag arcsec–2 in the i band, in a volume-limited sample of local galaxies within 11 Mpc and the Euclid footprint.
References:
Abdurro’uf et al. 2021, ApJS, 254, 15; Annibali, F. et al. 2020, MNRAS, 491, 5101; Baes, M. et al. 2024, A&A, 683, A181; Bell, E. F. et al. 2008, ApJ, 680, 295; Belokurov, V. et al. 2017, MNRAS, 466, 4711; Bílek, M. et al. 2020, MNRAS, 498, 2138; Blumenthal, G. R. et al. 1984, Nature, 311, 517; Bovy, J. et al. 2016, ApJ, 833, 31; Capaccioli, M. et al. 2015, A&A, 581, A10; Carlsten, S. G. et al. 2022, ApJ, 933, 47; Cantiello, M. et al. 2020, A&A, 639, A136; Cole, S. et al. 2000, MNRAS, 319, 168; Cook, B. A. et al. 2016, ApJ, 833, 158; Cooper, A. P. et al. 2010, MNRAS, 406, 744; Dubois, Y. et al. 2021, A&A, 651, A109; Iodice, E. et al. 2019, A&A, 623, A1; Iodice, E. et al. 2021, The Messenger, 183, 25; Johnston, K. V. et al. 2001, ApJ, 557, 137; Karachentsev, I. D., Makarov, D. I. & Kaisina, E. I. 2013, AJ, 145, 101; Martinez-Delgado, D. et al. 2010, AJ, 140, 962; Martinez-Delgado, D. et al. 2023, A&A, 671, A141; McFarland, J. P. et al. 2013, Exp Ast, 35, 45; Pillepich, A. et al. 2019, MNRAS, 490, 3196; Radburn-Smith, D. J. et al. 2011, ApJS, 195, 18; Ragusa, R. et al. 2021, A&A, 651, A39; Ragusa, R. et al. 2022, FrASS, 9, 852810; Sandford, E. et al. 2017, MNRAS, 470, 522; Shipp, N. et al. 2018, ApJ, 862, 114; Spavone, M. et al. 2018, ApJ, 864, 149; Spavone, M. et al. 2020, A&A, 639, A14; Springel, V. et al. 2008, MNRAS, 391, 1685; Trujillo, I. et al. 2021, A&A, 654, A40; Venhola, A. et al. 2018, A&A, 620, A165; White, S. D. M. & Frenk, C. S. 1991, ApJ, 379, 52
Telescopes and Instrumentation
37-43 (PDF)
The GRAVITY+ Project: GRAVITY-Wide and the Beam Compressor Differential Delay Lines
DOI:
10.18727/0722-6691/5376
ADS BibCode:
2024Msngr.193...37A
Section:
Telescopes and Instrumentation
Author(s)/Affiliation(s):
GRAVITY+ Collaboration; Abuter, R.; Allouche, F.; Amorim, A.; Bailet, C.; Berger, J.-P.; Berio, P.; Bigioli, A.; Boebion, O.; Böttcher, R.; Bolzer, M.-L.; Bonnet, H.; Bourdarot, G.; Bourget, P.; Brandner, W.; Brara, A.; Clénet, Y.; Courtney-Barrer, B.; Davies, R.; Defrère, D.; Delboulbé, A.; Delplancke, F.; Dembet, R.; Dong, S.; Drescher, A.; Eckart, A.; Édouard, C.; Eisenhauer, F.; Fabricius, M.; Feuchtgruber, H.; Finger, G.; Förster Schreiber, N.; Frahm, R.; Garcia, E.; Garcia, P.; Gendron, E.; Genzel, R.; Gil, J.P.; Gillessen, S.; Gomes, T.; Gonté, F.; Gopinath, V.; Graf, J.; Guajardo, P.; Guieu, S.; Häberle, M.; Hartl, M.; Haubois, X.; Haußmann, F.; Henning, T.; Hönig, S.; Horrobin, M.; Hubin, N.; Jochum, L.; Jocou, L.; Kaufer, A.; Kervella, P.; Kreidberg, L.; Lacour, S.; Lagarde, S.; Lai, O.; Lapeyrère, V.; Laugier, R.; Le Bouquin, J.-B.; Leftley, J.; Léna, P.; Lutz, D.; Mang, F.; Mérand, A.; Millour, F.; More, N.; Mroz, P.; Nowacki, H.; Nowak, M.; Neumayer, N.; Oberti, S.; Ott, T.; Özdemir, H.; Pallanca, L.; Paumard, T.; Perraut, K.; Perrin, G.; Petrov, R.; Pfuhl, O.; Pourré, N.; Prowatke, H.; Rabien, S.; Rau, C.; Rehm, C.; Riquelme, M.; Robbe, S.; Rochat, S.; Salman, M.; Sauter, J.; Schubert, J.; Schuhler, N.; Shangguan, J.; Shimizu, T.; Scheithauer, S.; Schuppe, D.; Soulez, F.; Stadler, E.; Straubmeier, C.; Sturm, E.; Subroweit, M.; Sykes, C.; Tacconi, L.J.; Tristram, K.; Vincent, F.; Uysal, S.; Wessely, P.; Widmann, F.; Wieprecht, E.; Wiezorrek, E.; Wimmer, L.; Woillez, J.; Yazici, S.; Zins, G.
AB(ESO) AC(Côte d’Azur Observatory, Lagrange Laboratory, France) AD(Faculty of Sciences, University of Lisbon, Portugal; Centre of Astrophysics and Gravitation, University of Lisbon, Portugal) AE(Côte d’Azur Observatory, Lagrange Laboratory, France) AF(Grenoble Alpes University, CNRS, IPAG, Grenoble, France) AG(Côte d’Azur Observatory, Lagrange Laboratory, France) AH(Institute of Astronomy, KU Leuven, Belgium) AI(Côte d’Azur Observatory, Lagrange Laboratory, France) AJ(Steinmeyer Mechatronik GmbH, Dresden, Germany) AK(Max Planck Institute for Extraterrestrial Physics, Garching, Germany; Department of Physics, Technical University of Munich, Garching, Germany) AL(ESO) AM(Max Planck Institute for Extraterrestrial Physics, Garching, Germany) AN(ESO) AO(Max Planck Institute for Astronomy, Heidelberg, Germany) AP(Max Planck Institute for Extraterrestrial Physics, Garching, Germany) AQ(LESIA, Paris Observatory, Meudon, France) AR(ESO; Research School of Astronomy and Astrophysics, Australian National University, Canberra, Australia) AS(Max Planck Institute for Extraterrestrial Physics, Garching, Germany) AT(Institute of Astronomy, KU Leuven, Belgium) AU(Grenoble Alpes University, CNRS, IPAG, Grenoble, France) AV(ESO) AW(LESIA, Paris Observatory, Meudon, France) AX(Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing, China) AY(Max Planck Institute for Extraterrestrial Physics, Garching, Germany) AZ(1st Institute of Physics, University of Cologne, Cologne, Germany; Max Planck Institute for Radio Astronomy, Bonn, Germany) BA(LESIA, Paris Observatory, Meudon, France) BB(Max Planck Institute for Extraterrestrial Physics, Garching, Germany) BC(Max Planck Institute for Extraterrestrial Physics, Garching, Germany) BD(Max Planck Institute for Extraterrestrial Physics, Garching, Germany) BE(Max Planck Institute for Extraterrestrial Physics, Garching, Germany) BF(Max Planck Institute for Extraterrestrial Physics, Garching, Germany) BG(ESO) BH(ESO) BI(Faculty of Engineering, University of Porto, Portugal; Centre of Astrophysics and Gravitation, University of Lisbon, Portugal) BJ(LESIA, Paris Observatory, Meudon, France) BK(Max Planck Institute for Extraterrestrial Physics, Garching, Germany; Departments of Physics and Astronomy, University of California, Berkeley, USA) BL(ESO) BM(Max Planck Institute for Extraterrestrial Physics, Garching, Germany) BN(Faculty of Engineering, University of Porto, Portugal; Centre of Astrophysics and Gravitation, University of Lisbon, Portugal) BO(ESO) BP(Max Planck Institute for Extraterrestrial Physics, Garching, Germany; ESO) BQ(Max Planck Institute for Extraterrestrial Physics, Garching, Germany) BR(ESO) BS(Grenoble Alpes University, CNRS, IPAG, Grenoble, France) BT(Max Planck Institute for Astronomy, Heidelberg, Germany) BU(Max Planck Institute for Extraterrestrial Physics, Garching, Germany) BV(ESO) BW(Max Planck Institute for Extraterrestrial Physics, Garching, Germany) BX(Max Planck Institute for Astronomy, Heidelberg, Germany) BY(School of Physics & Astronomy, University of Southampton, UK) BZ(1st Institute of Physics, University of Cologne, Cologne, Germany) CA(ESO) CB(ESO) CC(Grenoble Alpes University, CNRS, IPAG, Grenoble, France) CD(ESO) CE(LESIA, Paris Observatory, Meudon, France) CF(Max Planck Institute for Astronomy, Heidelberg, Germany) CG(LESIA, Paris Observatory, Meudon, France; ESO) CH(Côte d’Azur Observatory, Lagrange Laboratory, France) CI(Côte d’Azur Observatory, Lagrange Laboratory, France) CJ(LESIA, Paris Observatory, Meudon, France) CK(Institute of Astronomy, KU Leuven, Belgium) CL(Grenoble Alpes University, CNRS, IPAG, Grenoble, France) CM(Côte d’Azur Observatory, Lagrange Laboratory, France) CN(LESIA, Paris Observatory, Meudon, France) CO(Max Planck Institute for Extraterrestrial Physics, Garching, Germany) CP(Max Planck Institute for Extraterrestrial Physics, Garching, Germany; Department of Physics, Technical University of Munich, Garching, Germany) CQ(ESO) CR(Côte d’Azur Observatory, Lagrange Laboratory, France) CS(Max Planck Institute for Extraterrestrial Physics, Garching, Germany) CT(Astronomical Observatory, University of Warsaw, Poland) CU(Grenoble Alpes University, CNRS, IPAG, Grenoble, France) CV(Institute of Astronomy, Cambridge, UK) CW(Max Planck Institute for Astronomy, Heidelberg, Germany) CX(ESO) CY(Max Planck Institute for Extraterrestrial Physics, Garching, Germany) CZ(Max Planck Institute for Extraterrestrial Physics, Garching, Germany) DA(ESO) DB(LESIA, Paris Observatory, Meudon, France) DC(Grenoble Alpes University, CNRS, IPAG, Grenoble, France) DD(LESIA, Paris Observatory, Meudon, France) DE(Côte d’Azur Observatory, Lagrange Laboratory, France) DF(ESO) DG(Grenoble Alpes University, CNRS, IPAG, Grenoble, France) DH(Steinmeyer Mechatronik GmbH, Dresden, Germany) DI(Max Planck Institute for Extraterrestrial Physics, Garching, Germany) DJ(Max Planck Institute for Extraterrestrial Physics, Garching, Germany) DK(ISKON, Ing. Büro, Isen, Germany 20Steinmeyer Mechatronik GmbH, Dresden, Germany 21 Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing, China 22 Astronomical Observatory, University of Warsaw, Poland) DL(ESO) DM(Côte d’Azur Observatory, Lagrange Laboratory, France) DN(Grenoble Alpes University, CNRS, IPAG, Grenoble, France) DO(Institute of Astronomy, KU Leuven, Belgium) DP(Max Planck Institute for Extraterrestrial Physics, Garching, Germany; Max Planck Institute for Astronomy, Heidelberg, Germany) DQ(Max Planck Institute for Extraterrestrial Physics, Garching, Germany) DR(ESO) DS(Max Planck Institute for Extraterrestrial Physics, Garching, Germany) DT(Max Planck Institute for Extraterrestrial Physics, Garching, Germany) DU(Max Planck Institute for Astronomy, Heidelberg, Germany) DV(Max Planck Institute for Extraterrestrial Physics, Garching, Germany) DW(University of Lyon 1, ENS de Lyon, CNRS, Lyon, France) DX(Grenoble Alpes University, CNRS, IPAG, Grenoble, France) DY(1st Institute of Physics, University of Cologne, Cologne, Germany) DZ(Max Planck Institute for Extraterrestrial Physics, Garching, Germany) EA(1st Institute of Physics, University of Cologne, Cologne, Germany) EB(School of Physics & Astronomy, University of Southampton, UK) EC(Max Planck Institute for Extraterrestrial Physics, Garching, Germany) ED(ESO) EE(LESIA, Paris Observatory, Meudon, France) EF(Max Planck Institute for Extraterrestrial Physics, Garching, Germany) EG(Max Planck Institute for Extraterrestrial Physics, Garching, Germany) EH(Max Planck Institute for Extraterrestrial Physics, Garching, Germany) EI(Max Planck Institute for Extraterrestrial Physics, Garching, Germany) EJ(Max Planck Institute for Extraterrestrial Physics, Garching, Germany) EK(Max Planck Institute for Extraterrestrial Physics, Garching, Germany) EL(ESO) EM(Max Planck Institute for Extraterrestrial Physics, Garching, Germany) EN(ESO)
Abstract:
One of the primary goals of the GRAVITY+ upgrade is to significantly improve the sky coverage of GRAVITY and the Very Large Telescope Interferometer. With the successful commissioning and start of operations of the GRAVITY-Wide mode and the new Beam Compressor Differential Delay Lines, GRAVITY+ has opened up the sky to deep interferometric observations. These include the first dynamical black hole mass measurements at cosmic noon, vastly increased observable samples of microlensing events, and a step towards the first detection of an intermediate-mass black hole through stellar orbits.
References:
Abuter, R. et al. 2024, Nature, 627, 281; Dong, S. et al. 2019, ApJ, 871, 70; GRAVITY+ Collaboration et al. 2022a, A&A, 665, A75; GRAVITY+ Collaboration et al. 2022b, The Messenger, 189, 17; Häberle, M. et al. 2024, Nature, 631, 285
Astronomical News
45-46 (PDF)
Yearly Call and Fast Track Channel at ESO
DOI:
10.18727/0722-6691/5368
ADS BibCode:
2024Msngr.193...45P
Section:
Astronomical News
Author(s)/Affiliation(s):
Patat, F.; Leibundgut, B.; Mieske, S.; Rejkuba, M.
AA(ESO) AB(ESO) AC(ESO) AD(ESO)
Abstract:
The Time Allocation Working Group (TAWG), formed in 2015 as one of the actions generated by the ESO 2020 prioritisation initiative, was tasked with reviewing the telescope time allocation process at ESO. The TAWG report outlined key recommendations aimed at enhancing the efficiency and effectiveness of proposal handling and telescope scheduling at ESO. Among these, the transition to a yearly cycle for the Call for Proposals and the introduction of a Fast Track Channel were highlighted as significant steps forward. This paper outlines the background, rationale, and next steps for these upcoming changes, made possible thanks to recent improvements in software and scheduling tools.
References:
Brinks, E., Leibundgut, B. & Mathys, G. 2012, The Messenger, 150, 21; Patat, F. 2018, The Messenger, 173, 7; Primas, F. et al. 2015, The Messenger, 161, 6; Rejkuba, M. et al. 2024, Proc. SPIE, in press, arXiv:2407.15470
47-49 (PDF)
Scientific Visits to Chile — Numerous Opportunities
DOI:
10.18727/0722-6691/5369
ADS BibCode:
2024Msngr.193...47M
Section:
Astronomical News
Author(s)/Affiliation(s):
Mieske, S.; de Gregorio-Monsalvo, I.; Anderson, J.; Saviane, I.; Rejkuba, M.
AA(ESO) AB(ESO) AC(ESO) AD(ESO) AE(ESO)
Abstract:
ESO operates its observatories in the Chilean Atacama Desert, far from large light-polluting cities. At the same time, there is a rich scientific life on the ESO campus in Santiago de Chile, with more than 30 faculty astronomers, two dozen postdoctoral fellows and around 10 PhD students. This makes ESO’s hub in Chile an excellent location to foster scientific collaborations, and a natural starting point to interact with the Chilean astronomical community. Here we summarise the numerous opportunities for astronomers to visit ESO in Chile and connect with its scientific ecosystem.
References:
Rejkuba M. et al. 2018, The Messenger, 173, 2
50-53 (PDF)
Report on the "La Silla Observing School 2024"
DOI:
10.18727/0722-6691/5370
ADS BibCode:
2024Msngr.193...50R
Section:
Astronomical News
Author(s)/Affiliation(s):
Rodler, F.; De Rosa, R.J.; Johnston, E.; Lucertini, F.; Sbordone, L.; Sedaghati, E.
AA(ESO) AB(ESO) AC(Diego Portales University, Santiago, Chile) AD(ESO) AE(ESO) AF(ESO)
Abstract:
The La Silla Observing School is a series of training workshops in the use of telescopes and astronomical instruments for students and early-career researchers in astronomy. Following schools in 2016, 2018 and 2020, the fourth La Silla Observing School was held over two weeks in February 2024 and was hosted by ESO’s Office for Science and the La Silla Observatory. A total of 20 MSc students, PhD students and postdoctoral researchers from South and North America, Europe and Australia participated. They attended lectures on various observing strategies and astronomical instrumentation, on diversity, equity and inclusion in astronomy, as well as soft skills. For the hands-on part at the observatory, the students were supervised by five tutors. Four small research projects were offered, using three telescopes and four instruments. The students in each research group went through the full process of defining and discussing the observing strategies, conducting the observations, reducing and analysing the data and finally presenting the results to the scientific community at the ESO Vitacura offices. Given the high demand from the astronomical community for such educational programs, ESO is currently exploring the possibility of offering the La Silla Observing School on a yearly basis. Accordingly, the next school is foreseen for February 2025.
References:
Bouchy, F. et al. 2017, The Messenger, 169, 21; Buzzoni, B. et al. 1984, The Messenger, 38, 9; Kaufer, A. et al. 1999, The Messenger, 95, 8; Mayor, M. et al. 2003, The Messenger, 114, 20
54-56 (PDF)
Report on the ESO workshop "A Decade of ESO Wide-field Imaging Surveys"
DOI:
10.18727/0722-6691/5371
ADS BibCode:
2024Msngr.193...54P
Section:
Astronomical News
Author(s)/Affiliation(s):
Petr-Gotzens, M.G.; Häußler, B.
AA(ESO) AB(ESO)
Abstract:
A decade of targeted wide-field imaging at ESO was coming to an end in early 2023, when the near-infrared imager VIRCAM at the Visible and Infrared Survey Telescope for Astronomy was decommissioned. Shortly before, in October 2022, the optical wide-field imager OmegaCAM at the VLT Survey Telescope had become a hosted telescope after many years of being an ESO-operated optical survey machine. The two instruments were largely dedicated to public imaging surveys, which have amassed a total of nearly 60 000 hours of telescope time. To commemorate these milestones, ESO organised a five-day workshop in October 2023 to review the legacy left by these instruments, to summarise the variety of scientific impacts that the imaging surveys have had on a wide range of research topics in astronomy, and to encourage new ideas from/within the community to enlarge the exploitation of the high-quality VIRCAM and OmegaCAM survey data.
References:
Emerson, J. P. et al. 2004, The Messenger, 117, 27; Arnaboldi, M. et al. 1998, The Messenger, 93, 30
57-60 (PDF)
ALMA at Ten Years: Past, Present and Future
DOI:
10.18727/0722-6691/5372
ADS BibCode:
2024Msngr.193...57T
Section:
Astronomical News
Author(s)/Affiliation(s):
Díaz Trigo, M.; Brogan, C.; Carpenter, J.; Hatsukade, B.
AA(ESO) AB(National Radio Astronomy Observatory, Charlottesville, VA, USA) AC(Joint ALMA Observatory, Chile) AD(National Astronomical Observatory of Japan, Tokyo, Japan)
Abstract:
In December 2012 the first results from Early Science observations by the ALMA Observatory were discussed at a workshop held in Puerto Varas, Chile. In 2013 ALMA was inaugurated and only ten years later it has revolutionised our view of the Universe, both near and far. In December 2023 the scientific community returned to Puerto Varas to attend the conference ALMA at ten years: Past, Present and Future, celebrating ten years of ALMA operations. In this article, we report on the outcome of this conference.
References:
ALMA Partnership 2015, ApJL, 808, L3; Event Horizon Telescope Collaboration 2019, ApJL, 875, L1; Event Horizon Telescope Collaboration 2024, AJL, 964, L25; Hashimoto, T. et al. 2018, Nature, 557, 392; Jørgensen, J. K. et al. 2016, A&A, 595, A117; Stephens, I. W. et al. 2023, Nature, 623, 705; Torne, P. et al. 2023, ApJ, 959, 14; Velilla-Prieto, L. et al. 2023, Nature, 617, 696
61-63 (PDF)
Report on the ESO workshop "What was that? — Planning ESO follow-up for transients, variables, and Solar System objects in the era of LSST"
DOI:
10.18727/0722-6691/5373
ADS BibCode:
2024Msngr.193...61S
Section:
Astronomical News
Author(s)/Affiliation(s):
Snodgrass, C.
AA(Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh, UK)
Abstract:
This workshop aimed to bring together the various communities of astronomers who observe the changing night sky, from studies of nearby moving targets to the most distant transient sources. All of these fields will soon enter a new era of discovery with the beginning of the LSST, and many of the most exciting science cases will need detailed follow-up observations (for example spectroscopic characterisation), which will place significant demands on ESO’s facilities. Participants at the workshop discussed the how, why, and when of obtaining ESO observations to find out ‘what was that?’, in the era of millions of alerts per night.
References:
de Jong, R. S. et al. 2019, The Messenger, 175, 3; Hodgkin, S. T. et al. 2021, A&A, 652, A76; Ivezić, Ž. et al. 2019, ApJ, 873, 111; Mainieri, V. et al. 2024, arXiv:2403.05398; Schipani, P. et al. 2018, Proc. SPIE, 10702, 107020F Smartt, S. J. et al. 2013, The Messenger, 154, 50; Street, R. A. et al. 2020, Proc. SPIE, 11449, 1144925
64-65 (PDF)
Fellows at ESO
DOI:
10.18727/0722-6691/5374
ADS BibCode:
2024Msngr.193...64E
Section:
Astronomical News
Author(s)/Affiliation(s):
Marsset, M.; Barnes, A.
AA(ESO) AB(ESO)
66-66 (PDF)
External Fellows at ESO
DOI:
10.18727/0722-6691/5375
ADS BibCode:
2024Msngr.193...66E
Section:
Astronomical News
Author(s)/Affiliation(s):
Mauco Coronado, K.
AA(ESO)