





# Laser Comb: A novel Calibration System for high resolution Spectrographs

C. Araujo-Hauck<sup>1</sup>, L. Pasquini<sup>1</sup>, A. Manescau<sup>1</sup>, Th. Udem<sup>2</sup>, T.W. Haensch<sup>2</sup>, R. Holzwarth<sup>2,3</sup>, A. Sizmann<sup>3</sup>, H. Dekker<sup>1</sup>, S.D'Odorico<sup>1</sup>, M.T. Murphy<sup>4</sup>

<sup>1</sup> European Southern Observatory <sup>2</sup> Max-Planck-Institut fuer Quantenoptik <sup>3</sup> Menlo Systems GmbH <sup>4</sup> Institute of Astronomy, University of Cambridge

# Frequency Comb



A frequency comb consists of thousands of equally spaced frequencies over a bandwidth of several THz



## Basic Features of a Mode Locked Laser

#### Time domain:



Typical mode locked laser:

- pulse repetition rate T = 1-10 ns
- pulse duration  $\tau = 10$  fs

## Basic Features of a Mode Locked Laser

#### Frequency domain:



#### Typical mode locked laser:

- repetition frequency  $T^{-1} = 0.1-1$ GHz
- spectral width =  $\tau^{-1}$  = 100 THz



 $N = 10^5 \dots 10^6$  modes; phase synchronized

# Characterization of Frequency Stability



ESO Calibration Workshop – 25 Jan 2007

# The perfect calibration source

- Wide wavelength range
- Very large number of lines in the wavelength range
- Long-term wavelength stability (Δ λ / λ < 10<sup>-11</sup>)
- The wavelengths of individual lines should be known to very high accuracy
- The line intensities should all be about the same.

# ThAr hollow cathode emission lamp

- Cines differ in intensity and spacing
- Ar ions are sensible to pressure lamp changes.
- Shift with changing lamp pressure or current
- © Lamp ages
- C Lines blends

# Laser Frequency Comb

- The wavelength of each line is well known
- Cong term stability and reproducibility
- © Regular wavelength density
- © Controlled intensity distribution.
- Uniform frequency spacing
- Mode Spacing

#### Th Ar lamp Spectra

#### 

#### Simulate Comb echelle Spectra

R=150k,  $\Delta v=15GHz$ ,  $\lambda=5000$ Å S/N=500



Courtesy M. Murphy

## ESO is already using this technology in the VLTI:

A IR laser comb system from Menlo is successfully used in the PRIMA laser metrology system.

1/ Independent characterization of the I agar fraguency stabilization system

The performance of this device does not meet the requirements of the wavelength calibration system. !!! 2/ Development of an Absolute metrology system:

Prototype development of an <u>absolute</u> multi-λ metrology: Nd-Yag & ECLD locked on IR Frequency Comb (ESO/TT-Novatech/MPE-Menlo)

Publication accepted in Optics Letter: "Frequency comb referenced two-wavelength source for absolute distance Measurement"

M.C. daribles V.C. daried S.C. L. Sarra D.D. Har Hillar D. H. daried

Infrared regime

Separation between freq modes only MHz ⇒ continuum

# Requirements / Specs

- Wavelength range and spectral distribution
  - Min 400-680nm, goal 350-1000 nm
     Ideally will be obtained from a single-comb system
     For a larger range two combs may be combined to cover it
    - power requirement for nonlinear conversions





Known a priori with a very high precision

Achieved with a self-referenced OFC locked to a precision RF oscillator

Reference oscillator: GPS (10<sup>-11</sup>) Cs clock (10<sup>-13</sup>)

## Wavelength stability

 Accuracy should remain at same level for decades (or beyond the experiment/instrument lifetime)

### Required photon flux ⇒ 10<sup>-11</sup> W per line

Integration time a few sec

## Relative intensity between lines

Not more than factor of ~5 or 7dB (limited dynamic range of the CCD)

#### Line distribution

Almost continuous with no gaps to well sample the detector

## • Comb line separation ⇒ Optimum 15 GHz ± 1GHz

Ideally 15GHz fs source → No demostration of such a source

— New Technology development

Mode Filter cavity 

final step to achieve the desired 15GHz line spacing



15 GHz mode filter cavity eliminates 9 out of 10 modes

## Attenuation of supermodes (side modes)

• Suppressed to a level of 10<sup>-6</sup> with respect to the main modes (below dynamic rage of the detector)



Fabry-Perot transmitted power



#### Required finesse F:

$$F \approx \frac{10^{\frac{\rho_{\text{dB}}}{20}}}{1 - \frac{MSR}{FSR}}$$

FSR = free spectral range MSR = mode suppr. range  $\rho_{dB}$  = mode suppr. ratio

| C.                               | 26 0                                   | 2.00                             |
|----------------------------------|----------------------------------------|----------------------------------|
| side<br>mode<br>offset<br>in GHz | sup-<br>pression<br>ratio<br>in dB     | required<br>finesse<br>(approx.) |
| 0,25                             | 50                                     | 9500                             |
| 1                                | 50                                     | 2400                             |
| 3                                | 50                                     | 850                              |
| 3,75                             | 50                                     | 700                              |
| 3,75                             | ······································ | 2200                             |

ESO Calibration Workshop – 25 Jan 2007

# Ongoing activities

- Feasibility study
  - Indentified two technical solutions

■ Time schedule: 3 years ⇒ laboratory prototype

Possible prototype (HARPS) ? ⇒ 4 years...

# Conclusions

- With respect to the Th-Ar lamps, the laser comb will have a large number of advantages regarding the calibration of high resolution spectrographs.
- Developments based on laser comb systems offer the possibility of substantially improved spectroscopic wavelength calibration systems capable of meeting the increasing demands from various areas of astrophysical research.





