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Hipparchos = Ptolemaios = Tycho

Latitude error, arcmin utes
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Tycho’s Strategy

Be Better / Advanced in ALL areas of concern

Suite of much better Instruments VLT/ELT

Rigorous Calibration Plan
— Nightly cross-calibration / Frequent base checks CalPlan, Std. Progr.

Data Quality Check + Pipeline DQ + DF

— Usually at night spheric. trigon. results within 1 hr to check
— “Pipeline” to solve ~ 50 000 spherical triangles

— Logarithms not yet invented !!  Need sub - 7 accuracy

— So - Tycho invents “Prostapharesis” predictive calib / forward analysis
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Agenda

e Key Points
— Keeping the pace between upgrades of
Scientific Aims (Ambitions) , Instrumentation and Methods
— Consolidating ground conquered
— Preparing for greater challenges

e Key Phrases Predictive Calibration & Forward Analysis

— Predictive: utilizing physical (first) principles “a priory knowledge”

— Forward: do justice to the (precious raw) “observables” by enabling
to map into and compare theoretical models of targets in the raw data
domain
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Heritage 1

1995 ST-ECF / ESO Calibration WS

— “Predictive Calibration based on Physical Instrument Models”

In parallel (= 1998 ) ESO formulates
— VLT Operations Plan > Requirements for “Data Quality & Flow”

1997 - 1999 implementations of Physical Models

— CASPEC + UVES (Ballester & Rosa 19777 theory paper)
— UVES W-Calib Bootstrap + more in ETCs (Ballester + team)
— HST FOS (initially Rosa & Kerber)

1999 ESA =-> Instrument Physical Modeling Group
— thanks to former DG Riccardo Giacconi (see AnnRevAstrAstroph 2005)
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Heritage 2

* 2000-2005 ST-ECF Team on FOS & STIS

— Alexov, Bristow, Fiorentino, Kerber, Rosa + contr. Modigliani (DMD)

— FOS Post Operational Archive - based on FOS model

— STIS Model + SimulatedAnnealing - demonstrated factor 10 +

— Veryfied on superior entirely new Pt-Ne/Cr line catalogue (NIST collab.)

e 2005/6 CRIRES / Xshooter model
— Bristow + Kerber integrated into to ESO-INS
— thanks to DG Catherine Cesarsky (bringing them back from ESA)

e 2007 = Physical Models established Instr. Support

— Spectrograph kernel + Simulated Annealing ready to ...

— ... support many more spectrographic instruments
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The Observational Information Loop

CObservation

Universe

Perception of
the universe

0O x C 1 ??
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Demonstration Case

« HST Faint Object Spectrograph (FOS)
— Relatively straight layout

— Easy to grasp impact of ““physical insight” on calibration

— Obvious projection to FORSes ...

 Case STIS (UVES, CRIRES, XShooter...)

— More complex (2D — echelles, multi-objects...)

— But also “done” (in principle ...)
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34 order Poly - Dispersion Relation

Fesiduals FOS/BL H12 — COth and 1st term of 3rd order poly
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34 order Poly - Dispersion Relation

Fesiduals FOS/BL HZY — Oth and 1st term of 2Zrd order poly
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FOS Dispersion Model - Physical Principle

e Relevant FOS Optical Layout in High Res Mode

— wheel holds 5 different 1% order spherical gratings, 4 used per detector
— Imaged onto blue/red channel Digicon tubes

e Physical Principles
— ray optics equation from grating to photocathode
— z=(f-fo)*[ a + p +arcsin{s/m=* A -sin( q -

B)}]1-12

— S-distortion in Digicon tube  (off-axis aberration in E x B geometry)
— X=g*z+h*tan(i+]*Z) - Xo

* Restrictions on Parameters
— common to all gratings on a given detector: z0,x0, g, h,i, j, fO

— common to the red and blue channel per grating: f,(a - 5),[s/m*
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FOS Dispersion Model

e Result (FOS BLUE)

Assume that S-Distortion
common to the 3 clean
library list modes valid
for NUV/FUYV as well

Optimize common
solution including the S-
Distortion

Final residuals below 0.1
pix amplitude

Common pattern to all
modes is pin-cushion
distortion

Residual FOS/BL Grating only Dispersion Curves
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Fosidual Diode

Dispersion Relations for FOS

Shown are residuals measured w.r.t. model solution

FOS Dispersion Model valid for all gratings (differing colors)

— mode specific parameters: only grating constant, grating angle

— whether or not they are blends, wrong identifications, too sparsely spread
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Hipparchos = Ptolemaios = Tycho

Latitude error, arcmin utes
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MW Halo absorptions in QSO spectrum
Standard “‘calfos”

2 long exposures (blk,red) show repeat error
Unphysical dependency of velocity on wavelength

Only one absorption at 1403 A seems to fit expectation

PG 11154407 — MUG Interstellar Absorption Lines
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MW Halo absorptions in QSO spectrum
improved with ‘‘poa_calfos”

POA GIMP correction minimizes repeat error from 2 long exposures (blk, red)
All but one line match central value of expectation (21 cm line)

The one not fitting now is QSO Ly alpha redshifted (= NEW science)

Result of POYA (ZTMP carrection in eamhination with nhvcical madeal dienergjon
PG 11154407 — MWUG Interstellar Absorption Lines
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What about Flux Calibration

e PM should only predict Blaze-Function

— Vignetting(s) will follow from optical path model

— Mirror reflectivities etc. will enter as (accurate) laboratory measurables
but are allowed to change as required by insight (measurement)

— Combined model will be tuned so that StdStar comes out correctly

e Thatis

— PM predicts the SHAPE of the flux calib curve
— SCALING 1is the business of on-sky calibration ( zero-points )
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Grating - Interference
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Grating - Diffraction
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IF * DF
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FOS Model - Prediction for Blaze

Predictive Power !!

Blaz=—Ffree ref lactity of FOS HR gratirgs

Blaze-Free Efficiency i ' ' ' '
— should be the coating R
— IF*DF @ peaks in 1st order g”“ o1 W‘fﬁr..
= efficiency as f( A) £ g
— predicted sensitivity (-HST) F .
— compare to empirical flux cal § “°F
— derive blaze free efficiency 0.4 — —— Reflect ity of FOS colmtars
—O.S_D' e
Standard Stars wrong !! Ueuelengtn (]
— FUV/NUV/opt joints ~ few
%
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Line Profile - IF * DF (slit+collimator)
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Line Profile - obs vs theory (-vign)
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Line Profile - obs vs theory (2)
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Full Throughput Model - Hot Target
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Roadmap

 Very many “Observatory” pieces already in place

— Cal Plans , DQC and data base
— Know how of “how to deal with data” (extraction, peculiarities)
— Build up of extensive data base on detector performance

 Know how, building blocks for ‘“PhysModels” + Lab Standards
— many individuals already carry parts of the “company knowledge”
— Parts of original IPMG integrated into ESO-INS (Bristow, Kerber)
— PhysMod based calibration part of CRIRES and XShooter Projects

 Required: Consolidation — Sustainability - Development

— Ciritical review of reference data and processes

— Clearing station to achieve coherent view
— Injection of advanced calibration concepts into instrument design
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Stability of Instruments

KUEYEN/UVES trending: STD-NIGHT 2006

instrument efficiency (from night-time STD stars);, last date: 2006-11-27
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Yes, agreed in principle, but ...

* Non-stability of instruments on ground

— PM strengths = meaningful parameters = insight
— and see DQC trending = eg. UVES, FORSes usually very stable

 On ground we have an atmosphere
— PM strengths = decoupling of instr. / atmosph. effects

— Atmosphere becomes a separate “controllable” item

 QOur instruments are too complicated

— we designed them, so we have the insight
— more complex = more substantial insight helps

ESO HQ 26-01-07 Advanced & Forward M. Rosa
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Atmosphere (terrestial)

e Key: Separate Instrumental Stuff from Atmosphere
— Required: PhysMod based Calibration

 Atmosphere - becomes another ‘“model item”

— At least from 320 to about 850 nm (the DoD knows that also beyond)
— Extinction = 3-4 components = Form well known
— Actual scaling should be controlled by LOSSAM / Std.Star expos

e Sky Brightness - calls for a scaleable model as well

—> F. Patat’s talk on Tuesday morning

ESO HQ 26-01-07 Advanced & Forward M. Rosa 2°



Atmosphere (terrestial) cont.

e b.t.w. - ’m proud that
— everyone observing LS or PO is using “ATMOEXAN.TBL”
— I constructed it in 1983
— by matching a 3 component Physical Model
(Rayleigh, Ozone, Aerosols)
... to the sparse data points of Tueg (1977 = Messenger 11)

e But

— Anyone ever checked it for PO ? — it was for LS altitude !!

— It does not include dust (Vulcanoes, Copper-Mining ...)

— Also, meanwhile we got “Globals” (Warming, Dimming etc ...)
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e So much for those that still pretend that

‘“ Physical Models can not be of much use
at a ground based observatory ...

... because we have an Atmosphere.

Michael - you know, we prefer to use
g00d old ATMOEXAN instead ”’
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Reminder:
Observation Information Loop

CObservation

Universe

Perception of
the universe

0O x C 1 ??
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Definitions & Examples

e First principle model Ray trace spectrograph model

— prescription based entirely on physical laws
— very high predictive power
— required to isolate effects while building physical models

e Physical model UVES/STIS model (ray + dist.)

— prescription primarily based on physical / engineering insight
— empirical “fudge” only as unavoidable (tolerable) substitute

— sufficient predictive power for predictive calibration, forward analysis

 Empirical model ETC, polyn. dispersion fits

— no physical insight required / inserted , can not be inverted
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FOS Scatter Model

Test on Data

Recall

— wanted to predict the observed
raw data for a cool target at

UV wavelengths

— Test for a Solar Analog
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Concepts to Get Around the Info Loop

e Canonical Concept Empirical backward analysis

— empirical calibration relations = re-scale raw data = interpretation

 Advanced Concept Predictive Calibration

— instrument models =2 noise free calibration relations

— first principles = predictive capabilities outside “standards” range

— Analysis:  like empirical concept = “backward” (scaled raw data)

e Superior Concept Forward Analysis

— can simulate raw data with sufficient accuracy and detail

— evaluate theoretical target models in raw data domain

— obtain likelihood estimates for range of potential target properties
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Calibration in Context

Determine relation between output and the value of the input
quantity, a reference standard (ISO 9000)

Traceability — establish accuracy by an unbroken line to higher
standards. For each step evaluate uncertainty.

Quality Control — monitoring, stability

Data Reduction — or better ‘“‘Preparation”

— removal of instrumental signatures, extraction, “resampling”

Why do Calib and Reduc appear to be so intermingled ?
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FOS Calibration Issues - Physical View

 Geometric and Physical (wave) Optics

— dispersion relations bad Pt-Ne/Cr line catalogue and polynomial fits
— reflectivity, sensitivity, LSF, rating scatter, blaze functions

° 4 9 ‘ 9 ®
* Electron optics (S-Distortion, GIMP, YBase trim)
— X (dispersion direction) --> lambda zero points, flat field shifting
— y (spatial direction) --> vignetting (=absolute flux scale), color terms

 Thermal, mechanical, electronic, environmental items
wavelength scale zero points (bending), flux scale (pointing, vignetting),
— dark level (solar cycles, particles in geo B-field, unbaffled stray light)
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