From Predictive Calibration to Forward Analysis

Preparing for the ELT era

Michael R. Rosa

Space Telescope European Coordinating Facility

ESA/ESO

Hipparchos → Ptolemaios → Tycho

Tycho's Strategy

Be Better / Advanced in <u>ALL</u> areas of concern

Suite of much better Instruments

VLT/ELT

- Rigorous Calibration Plan
 - Nightly cross-calibration / Frequent base checks

CalPlan, Std. Progr.

• Data Quality Check + Pipeline

DQ + DF

- Usually at night spheric. trigon. results within 1 hr to check
- "Pipeline" to solve ~ 50 000 spherical triangles
- Logarithms not yet invented !! Need sub " accuracy

Agenda

Key Points

- Keeping the pace between upgrades of
 Scientific Aims (Ambitions) , Instrumentation and Methods
- Consolidating ground conquered
- Preparing for greater challenges

• Key Phrases Predictive Calibration & Forward Analysis

- Predictive: utilizing physical (first) principles "a priory knowledge"
- Forward: do justice to the (precious raw) "observables" by enabling to map into and compare theoretical models of targets in the raw data domain

Heritage 1

- 1995 ST-ECF / ESO Calibration WS
 - "Predictive Calibration based on Physical Instrument Models"
- In parallel (→ 1998) ESO formulates
 - VLT Operations Plan → Requirements for "Data Quality & Flow"
- 1997 1999 implementations of Physical Models
 - CASPEC + UVES (Ballester & Rosa 1977 theory paper)
 - UVES W-Calib Bootstrap + more in ETCs (Ballester + team)
 - HST FOS (initially Rosa & Kerber)
- 1999 ESA → Instrument Physical Modeling Group
 - thanks to former DG Riccardo Giacconi (see AnnRevAstrAstroph 2005)

Heritage 2

2000 - 2005 ST-ECF Team on FOS & STIS

- Alexov, Bristow, Fiorentino, Kerber, Rosa + contr. Modigliani (DMD)
- FOS Post Operational Archive based on FOS model
- STIS Model + SimulatedAnnealing demonstrated factor 10 +
- Veryfied on superior entirely new Pt-Ne/Cr line catalogue (NIST collab.)

• 2005/6 CRIRES / Xshooter model

- Bristow + Kerber integrated into to ESO-INS
- thanks to DG Catherine Cesarsky (bringing them back from ESA)

• 2007 → Physical Models established Instr. Support

- Spectrograph kernel + Simulated Annealing ready to ...
- ... support many more spectrographic instruments

The Observational Information Loop

Demonstration Case

• HST Faint Object Spectrograph (FOS)

- Relatively straight layout
- Easy to grasp impact of "physical insight" on calibration
- Obvious projection to FORSes ...

• Case STIS (UVES, CRIRES, XShooter...)

- More complex (2D echelles, multi-objects...)
- But also "done" (in principle ...)

3rd order Poly - Dispersion Relation

3rd order Poly - Dispersion Relation

FOS Dispersion Model - Physical Principle

Relevant FOS Optical Layout in High Res Mode

- wheel holds 5 different 1st order spherical gratings, 4 used per detector
- Imaged onto blue/red channel Digicon tubes

Physical Principles

ray optics equation from grating to photocathode

$$- z = (f - f_0) * [\alpha + \beta + \arcsin \{s/m * \lambda - \sin (\alpha - \beta)\}] - z_0$$

S-distortion in Digicon tube (off-axis aberration in E x B geometry)

-
$$x = g * z + h * tan (i + j * z) - x_0$$

Restrictions on Parameters

- common to all gratings on a given detector: z0, x0, g, h, i, j, f0

- common to the red and blue channel per grating: f, $(\alpha - \beta)$, [s/m * ESO HQ] 26-01-07 Advanced & Forward M. Rosa 11

FOS Dispersion Model

• Result (FOS BLUE)

- Assume that S-Distortion common to the 3 clean library list modes valid for NUV/FUV as well
- Optimize common solution including the S-Distortion
- Final residuals below 0.1 pix amplitude
- Common pattern to all modes is pin-cushion distortion

Dispersion Relations for FOS

- Shown are residuals measured w.r.t. model solution
- FOS Dispersion Model valid for all gratings (differing colors)
 - mode specific parameters: only grating constant, grating angle
- Classical polynomial fit will fit all lines well
 - whether or not they are blends, wrong identifications, too sparsely spread

Hipparchos → **Ptolemaios** → **Tycho**

MW Halo absorptions in QSO spectrum Standard "calfos"

- 2 long exposures (blk,red) show repeat error
- Unphysical dependency of velocity on wavelength
- Only one absorption at 1403 A seems to fit expectation

15

MW Halo absorptions in QSO spectrum improved with "poa_calfos"

- POA GIMP correction minimizes repeat error from 2 long exposures (blk, red)
- All but one line match central value of expectation (21 cm line)
- The one not fitting now is QSO Ly alpha redshifted (= NEW science)
- Result of POA GIMP correction in combination with physical model dispersion

PG 1115+407 - MWG Interstellar Absorption Lines 400 ST-ECF/POA *poa-calfos* pipeline Velocity [Km/sec] 200 0 Barycentric -200 -4001200 1300 1500 1600 Wavelength [A]

16

What about Flux Calibration

PM should only predict Blaze-Function

- Vignetting(s) will follow from optical path model
- Mirror reflectivities etc. will enter as (accurate) laboratory measurables but are allowed to change as required by insight (measurement)
- Combined model will be tuned so that StdStar comes out correctly

That is

- PM predicts the SHAPE of the flux calib curve
- SCALING is the business of on-sky calibration (zero-points)

Grating - Interference

Grating - Diffraction

IF * DF

FOS Model - Prediction for Blaze

Predictive Power !!

Blaze-Free Efficiency

- should be the coating
- IF*DF @ peaks in 1st order = efficiency as $f(\lambda)$
- predicted sensitivity (-HST)
- compare to empirical flux cal
- derive blaze free efficiency

FUV/NUV/opt joints ~ few

21

Line Profile - IF * DF (slit+collimator)

Line Profile - obs vs theory (-vign)

Line Profile - obs vs theory (2)

Full Throughput Model - Hot Target

M. Rosa

Roadmap

Very many "Observatory" pieces already in place

- Cal Plans , DQC and data base
- Know how of "how to deal with data" (extraction, peculiarities)
- Build up of extensive data base on detector performance

• Know how, building blocks for "PhysModels" + Lab Standards

- many individuals already carry parts of the "company knowledge"
- Parts of original IPMG integrated into ESO-INS (Bristow, Kerber)
- PhysMod based calibration part of CRIRES and XShooter Projects

• Required: Consolidation – Sustainability - Development

- Critical review of reference data and processes
- Clearing station to achieve coherent view
- Injection of advanced calibration concepts into instrument design

Stability of Instruments

KUEYEN/UVES trending: STD-NIGHT 2006

instrument efficiency (from night-time STD stars); last date: 2006-11-27

Yes, agreed in principle, but ...

Non-stability of instruments on ground

- PM strengths → meaningful parameters → insight
- and see DQC trending \rightarrow eg. UVES, FORSes usually very stable

On ground we have an atmosphere

- PM strengths → decoupling of instr. / atmosph. effects
- Atmosphere becomes a separate "controllable" item

Our instruments are too complicated

- we designed them, so we have the insight
- − more complex → more substantial insight helps

Atmosphere (terrestial)

- Key: Separate Instrumental Stuff from Atmosphere
 - Required: PhysMod based Calibration
- Atmosphere becomes another "model item"
 - At least from 320 to about 850 nm (the DoD knows that also beyond)
 - Extinction \rightarrow 3-4 components \rightarrow Form well known
 - Actual scaling should be controlled by LOSSAM / Std.Star expos
- Sky Brightness calls for a scaleable model as well
 - → F. Patat's talk on Tuesday morning

Atmosphere (terrestial) cont.

• b.t.w. - I'm proud that

- everyone observing LS or PO is using "ATMOEXAN.TBL"
- I constructed it in 1983
- by matching a 3 component Physical Model
 (Rayleigh, Ozone, Aerosols)
 ... to the sparse data points of Tueg (1977 = Messenger 11)

But

- Anyone ever checked it for PO? it was for LS altitude!!
- It does not include dust (Vulcanoes, Copper-Mining ...)
- Also, meanwhile we got "Globals" (Warming, Dimming etc ...)

• So much for those that still pretend that

"Physical Models can not be of much use at a ground based observatory because we have an Atmosphere.

Michael - you know, we prefer to use good old ATMOEXAN instead "

Reminder: Observation Information Loop

M. Rosa

Definitions & Examples

• First principle model Ray trace spectrograph model

- prescription based entirely on physical laws
- very high predictive power
- required to isolate effects while building physical models

Physical model

UVES/STIS model (ray + dist.)

- prescription primarily based on physical / engineering insight
- empirical "fudge" only as unavoidable (tolerable) substitute
- sufficient predictive power for predictive calibration, forward analysis

Empirical model

ETC, polyn. dispersion fits

- no physical insight required / inserted , can not be inverted
- no predictive power outside data range / when params change

FOS Scatter Model Test on Data

Recall

- wanted to predict the observed raw data for a cool target at UV wavelengths
- Test for a Solar Analog
- pass Kurucz model of Sun through the FOS model
- compare with observations of solar analog 16 Cyg B
- @ 160 nm signal is 1% of scattered (red) light
- still the prediction agrees to better 5 % with actual data

Concepts to Get Around the Info Loop

• Canonical Concept Empirical backward analysis

- empirical calibration relations \rightarrow re-scale raw data \rightarrow interpretation

• Advanced Concept Predictive Calibration

- instrument models → noise free calibration relations
- first principles → predictive capabilities outside "standards" range
- Analysis: like empirical concept → "backward" (scaled raw data)

• Superior Concept Forward Analysis

- can simulate raw data with sufficient accuracy and detail
- evaluate theoretical target models in raw data domain
- obtain likelihood estimates for range of potential target properties

Calibration in Context

• Determine relation between output and the value of the input quantity, a reference standard (ISO 9000)

- **Traceability** establish accuracy by an unbroken line to higher standards. For each step evaluate uncertainty.
- Quality Control monitoring, stability
- Data Reduction or better "Preparation"
 - removal of instrumental signatures, extraction, "resampling"
- Why do Calib and Reduc appear to be so intermingled?

FOS Calibration Issues - Physical View

- Geometric and Physical (wave) Optics
 - dispersion relations

bad Pt-Ne/Cr line catalogue and polynomial fits

reflectivity, sensitivity, LSF,

grating scatter, blaze functions

- Electron optics (S-Distortion, GIMP, YBase trim)
 - x (dispersion direction) --> lambda zero points, flat field shifting
 - y (spatial direction)
 vignetting (=absolute flux scale), color terms
- Thermal, mechanical, electronic, environmental items
 - wavelength scale zero points (bending), flux scale (pointing, vignetting),
 - dark level (solar cycles, particles in geo B-field, unbaffled stray light)