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ALMA STATUS — March 2009

Main buildings done. Roads & pads on high site underway
15 antennas 1n various stages — 2 conditionally accepted.

2 Transporters on site and accepted.

Two receiver system and 4 sets of electronics on site
16-1nput correlator and first quadrant of 64-1nput installed
Mass production underway of almost all other 1tems
Systems and software testing completed at VLA site

Some development work still going on 1n other areas:
 Band 10 front-ends
e (Calibration Loads
« Laser Local Oscillator refinements
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Google-Earth view of site with antennas in the
most extended configuration — baselines to 16km
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L2 I11. A\iery Simulation ¢




Foundations for the Compact Array —

nearly done. Power and fibres next.




New Plan for Occupation of Antenna Stations

Phase 0
Phase 1
Phase 2

Phase 3

Phase 4

Phase 5
Phase 6

Jun ’09 1 pad for antenna checkout

Sep 09 3 pads for first fringes / closure

Jan 10 10 ACA pads - initial commissioning
July 10 add 6 inner array pads

Mar ’11 for Early Science - central cluster
plus 20 inner array pads

Oct ’11 high resolution — baselines to ~ 4km
Apr ‘12 goal for completion of outer array



All4 ¥

Phase 1

Phase O

Phase 2

22 Zﬁﬁ

Al

Al05

ROAD NO. 1C
SEE C8

= = = - ~cr ‘_E 1_ 1 i_/_— I



Phase 2

Baselines
Pads
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Phase 4 (“large” array)

Baselines
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Phase 4
Early Science Beams

Medium

Large

J2000 Ceclination
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Array Operations
Site (AOS) 5000m
The ACA correlator

and Y4 of 64-input one § | T y

i I il — -

are up and running




The Operations Support Facility (OSF) 2900m
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Antennas are very much state of the art
Four similar but not 1identical designs

» Extensive use of Carbon Fibre

* Precision panels plus holography

* Very Stiff Mounts and Accurate Drives
* “Metrology”




All CFRP Backup Structure




AEM design

e CFRP cabin
o Stiff yoke
e Direct drives




Arrival of First European Antenna at the OSF




Four MELCO Antennas being tested
(non-interferometrically!)




Two Vertex Antennas under test —
Eight more being assembled




Dishes measured by
holography at 104 GHz
Use source on tower at
~300m distance and
correct for the curved
wavefront




Initial Map — amplitude and phase
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The use of direct drives gives amazingly good
tracking and dynamic performance

Interferometric
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Fast switching response — Radio data
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Tranqurté_r§ coming pas__t_'the vaIIey of moon




Flrst Move of an ALMA Antenna
(July 8, 2008)




Receivers — up to 10 cartridges 1n one cryostat
Chajnantor - 5000m, 0.25mm pwv
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3-D model of the “front end”

Terbary Lens

Tertiary Mirror :
Optics (Bands2 and 4) he
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Underside

Turbe Purmp

Vacuum Sensor

Gate Valve

Electranic Subracks(2)

Front End Chassis

Warm Cartridge
Aszembly( 107

Coaxial Cables

Apron(10)



Bands 3 (84-116 GHz), 6 (211-275 GHz).
7 (275-373 GHz), and 9 (602-720 GHz) SIS “cartridges”




ALMA Front End System Integration




First FE/BE under test at OSF




Testing and Verifying Performance 1s HARD!
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Band 4 Receiver Beam Pattern

* Cross sectional views of co-polar beam patterns in the

symmetric and asymmetric plane at 144 GHz. Red lines
indicate measured beam pattern of the Pol 0 port. Black
lines are the physical optics calculated by M. Sugimoto.




Back End racks being lifted into MELCO #2 recelrver cabin




Dual-channel Digitizers on the Antennas

3 bits at 4 Gs/sec per channel
Data rate 1s 120 Gb/s per antenna
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Data Transmission System
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Formatter with 3 Optical
Transmitting Transponders




Data Receiver Module
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[Laser LLocal Oscillator — Baseline

LO reference distributed optically by using two
lasers — master and slave — separated by ~100 GHz

Master —= Line Length
Laser Comection
Distribution
[ Line Length
1 J Cormrection |a

Laser Photonic = . &
SW‘IH'IE':‘-?ZEF Distribution &
L]

= Line Length

[ 3
!
e ] Comrection

Microwave
Reference




Correcting Fibre Length Changes — Baseline

Close the loop on the optical Master Laser fringes

Stretchers

FIBER

(‘U | JM

Reference F

1
i
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- o @ @
25

Reference

Lme Length
Correction

PC: Polarization Controller
PBS: Polarization Beam-Splitter
FFS: Fiber Frequency Shifter
FRM: Faraday Rotating Mirror
HM: electronic Harmonic Mixer




Alternative Scheme for generating the two optical

frequencies — one laser with fast modulation.

Microwave

svnthesizer
|

Bias T

| Lower Upper

Bias controller

./ Alternative Laser Synthesizer

Main M7 Band-Reject Filter
am (Fiber Brag
Grating)

X-cut LINbO,

Sub MZ
Input Light-wave signal Output Light-wave signal
.. e . . C e . Master Slave
Polarization maintaining Polarization maintaining
Master Laser signal Two-tone signal

Baseline Laser Synthesizer

This should provide somewhat lower phase noise than the
“baseline” design and rather more flexibility in terms of rapid

frequency changes and the like. The plan 1s for our East Asia
partners to build a synthesizer based on this approach as a test.




Alternative Line Length Correction Scheme

Locks on modulation instead of on the optical wave

2 light-wave
signal

Photo-mixer

Band pass
filter

Sampler

Transmitted
signal

i A;:;E;SE::E Faraday
Shifter Reflectar

Error
\mltage

Ground unit

Long Single
B}Mode ﬁb%

25MHz=z

Polarization
Combiner/Divider

@ Circulator

=mmm : Optical cable

=== : Metal cable

Antenna unit

Trying to find way of building a test version of this without
delaying the production of the baseline system




183 GHz WVR {for phase correction




Test of phase correction at the SMA

Interferometer (blue), Radiometer (pink) and Difference (yellow)
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Polarization

Each receiver cartridge has two channels that should
respond to one linear polarization only.

Requirement was set at 99.5% polarization purity

Some pre-production cartridges were only achieving
~97 or 98%.

Even 99.5% leaves a demanding job to be done 1n
terms of calibration. Values below ~99% will cause
problems for basic total power 1maging.



Measuring Stoke’s Visibilities

IF we had perfect linear feeds these come from:

[=X,.X*+ Y,.Y,* Total power
Q=X.X,*-Y,.Y,* Linear 0/ 90deg
U=X,Y,*+ Y, .X,* Linear 45 / 135deg
V=1X..Y,* 1Y . X,* Circular

For a weakly polarized source X.X* and Y.Y™ are LARGE So
measuring Q 1s mainly a stability 1ssue — have to maintain <I
part in 1000 going from source to calibrator.

But X.Y*, etc., are small, so for U and V stability is (a bit) less
critical, the problem 1s purity and calibration:



* The Leakage Problem:

* Front End actually givesus X’=X+0Y, Y =Y +¢X
where |0 | ~| € |~ 0.1 for 20dB polarization leakage.

1.e. errors of order 1% of total flux

1.e. errors of order 10% of total flux

So we then need to calibrate these to ~1 part in 100 to make
measurements at the 0.1% level.



Band 7 — seen as most critical
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Band 7 — solution

* Filter problem due to moulding — new process
« Effect of grid — 1s being fixed by rotating 1t

TR phi,=120.7 ° Xpol,,=-56.5dB phi=-142.5°

0.2f

01t

01k

-0.2

TR phi,= 0.0° Xpol,,=-24.0dB phi_= 0.0°

8




Software

* Hugely important aspect of ALMA

* Multiple levels from individual micros
controlling devices, through the overall
real-time control and data taking, on to data
reduction and calibration and up to the
broad 1ssues of user support — proposal
writing tools and the like.

* A very complete data reduction system,
CASA, 1s now available for down-loading



Observing Tool
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Interferometry

data from the
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Archive has a central role

Archive content:

 All raw and calibration data

 All monitor data

* All data products produced by the
standard pipeline (images etc.)

* Observing logs

* Proposals

* SBs

* Publications and other information

Virtual Observatory compliant

High spee
and/or disks

Correlator data
Monitor data

Quick-look pipeline

OSF Archive

High speed

A

network Data rate: ~ 1 TB/day

A 4

Santiago (SCO)
Main Archive
Science Pipeline

d network

e

EU ARC
Mirror archive

EAARC NA ARC
Mirror archive || Mirror archive




ALMA Regional Centers

The ARC’s will provide support to the user community.

This 1s where proposals will be sent, data will arrive and
expert help on analysis will be provided.

Copyright (c) Houghton Mifflin Company. All Rights Reservad.




ALMA General Overview — Forecast Dates as of 31 Jan 2009
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Level 1 Science Requirements

The ability to detect spectral line emission from CO or C Il in a normal
galaxy like the Milky Way at a redshift of z=3, in less than 24 hours of
observation.

The ability to image the gas kinematics in protostars and protoplanetary
disks around young Sun-like stars at a distance of 150 pc (roughly the
distance of the star forming clouds in Ophiuchus or Corona Australis),
enabling one to study their physical, chemical and magnetic field
structures and to detect the tidal gaps created by planets undergoing
formation in the disks.

The ability to provide precise images at an angular resolution of 0.”1. Here
the term precise image means representing within the noise level the sky
brightness at all points where the brightness is greater than 0.1% of the
peak image brightness. This requirement applies to all sources visible to
ALMA that transit at an elevation greater than 20 degrees.



Goal for sensitivity at 1.3 mm wavelength

(continuum) 1s 10 microJy in lhour

ALMA o
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Red-shifted far-IR peak
MS82 shiftedtoz=1,2...12

Frequency [GHz)
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Scientific Goals

Map the most distant parts of the Universe — this

means looking back 1n time about 12 Gyrs

Left: Hubble image of distant Right: Mm-wave images of
galaxies nearby galaxies




Scientific Goals (2)

Make 1mages of new stars being formed, with

planets emerging from the disks around them.
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Planet formation in
nearby disks

M/ My = 0.5 My, /1M

star Jup sun

Orbital radius: 5 AU

Disk mass as in the circumstellar disk
around the Butterfly Star in Taurus

(ALMA: 10km, t._=8h, 30° phase noise)

s> "Int

Wolf & D’Angelo (2005)
astro-ph / 0410064

Goal for angular resolution 1s
0.005 arcsec at 950 GHz and
0.015 arcsec at 300 GHz



Imaging Quality

* Simulated map Error map
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Scientific Goals

Spectroscopy: up to 8 GHz of instantaneous bandwidth.
Resolution down to kHz on selected regions

6.805 10° 6.815 10°
Rest Frequenc




Some complex organic molecules

Detected Not (yet) detected
e pe % o :
?-‘" 3 \3 \ ."(!‘3' ,?\O
. 3 . | f.l -
.%‘#“-.k
Acetic acid Di-methyl ether ¢
& 2<® " P Glycine Purine
- -
é “ “ . N
Ethanol Sugar }v—#‘ ? 4 ?"'
-5 e g . e
'} o6 ? '. ;.-‘ .*'uf*"‘i’

: ‘ - A L r'.
Methz' cyanide Methyl formate Pyrimidine Caffeine
"f"‘-‘f’ : . We do not how far this chemical
e T complexity extends.
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Scientific Goals

With 100 times more sensitivity and angular
resolution than existing telescopes ALMA will
extend our understanding of the nature of almost
every type of astronomical object — from our
own sun and planets to the most distant quasars.

In addition to these key properties we have high
specifications on accuracy (i.e. calibration), time
resolution and polarization, which 1s critical for
determination of magnetic fields.

We are also aiming to achieve great flexibility in
observing — e.g. spectral line setup, scheduling



Additional Requirements

Total power (“zero spacing”) and short spacings
provided by the ACA (ALMA Compact Array) — four
12m antennas plus twelve 7m antennas

Ability to observe the Sun. Time resolution 16ms
Track comets and other relatively nearby objects

Polarization measurements — goal 1s 0.1% accuracy 1n
Stokes parameters

To be added ?: ability to phase-up antennas so that
ALMA can be one element in a VLBI array



Milestones Achieved at ATF

Sgr B2 Spectrum
97.9 GHz

Raster on Moon with Total Power detectors
simultaneously on 2 antennas
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Scans of Moon 11t March 09 at OSF
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Advertisement
ALMA 1s recruiting!

We have vacancies for:

Commissioning Scientists — includes 3 year posts
and shorter secondments — “visitors program”, etc.

Systems Astronomers
Operations Astronomers
Head of the Archive Operations Group

See me, Alison Peck or Lars Nyman and/or look at the
ESO or NRAO web pages



ATACAMA LARGE MILLIMETER ARRAY

www.alma.cl

The Atacama Large Millimeter/submillimeter Array (ALMA), an international astronomy
facility, is a partnership among Europe, Japan and North America, in cooperation with the
Republic of Chile. ALMA is funded in Europe by the European Organlzatlon for Astronomical
Research in the Southern Hemisphere (ESO), in Japan by the National Institutes of Natural
Sciences (NINS) in cooperation with the Academia Sinica in Taiwan and in North America by
the U.S. National Science Foundation (NSF) in cooperation with the National Research Council
of Canada (NRC). ALMA construction and operations are led on behalf of Europe by ESO, on
behalf of Japan by the National Astronomical Observatory of Japan (NAOJ) and on behalf of
North America by the National Radio Astronomy Observatory (NRAO), which is managed by
Associated Universities, Inc. (AUI).
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