

mm observations of strongly lensed z>6 galaxies: a preview to ALMA and E-ELT science on the first galaxies

Daniel Schaerer (ObsGE, CNRS)

Main collaborators: Frédéric Boone, Françoise Combes (Paris),

Roser Pelló (OMP)

- Overview, motivation: dust in SF galaxies at z>4-6
- Case study of a strongly lensed z=6.56 galaxy
- Next targets for mm
- •IRAC/Herschel/... Lensing Cluster Survey before ALMA, E-ELT, JWST
- Tracing cosmic reionisation with OPTIMOS-EVE @ E-ELT

- Boone, Schaerer et al. (2007, A&A 460, 397)
- Schaerer & de Barros (2009, A&A, submitted)

Main questions

- Searches for and characterisation of the most distant, primeval galaxies -- z>6
- Identification of the sources of cosmic reionisation
- Trace the history of SF and cosmic reionisation during first Gyr after Big Bang
- Study evolution of the dust content in the early Universe
- Are there dusty/hidden galaxies at z>4-6?
- Global picture of the different populations of high-z galaxies and their evolution

Are there dusty/hidden galaxies at z>4-6?

- SCUBA gals --- generally found at z<~2.5
- Few exceptional cases:
 - z=4.547 SMG (Capak et al. 2008)
 - LABOCA ECDFS z=4.76 object (Coppin et al. 2009)
 - GOODS 850-5: z~4-6? (Wang et al. 2009)

BUT:

- All high-z QSO --> large dust masses / high SFR
- What about « normal » high-z galaxies?
- General: LBG blue at z>3 --> little dust (e.g. Bouwens et al. 2008: UV attenuation ~1.5 @z~6; cf. Reddy et al. 2009)
- → Now: case study using gravitational lensing!
- → Soon: Spitzer/Herschel/sub-mm lensing cluster survey
- → Soon+Later: ALMA, E-ELT, JWST

Known z>6 galaxies

Found thanks to lensing:

EL selected:

- * **z=6.56 galaxy behind A370**: Hu et al. (2002)
- * 5 z~8.7-10.2 candidates: Stark et al. (2007)

LBG (z, J dropout):

- * z~7 galaxy (HST + Spitzer): Kneib et al. (2004), Egami et al. (2005)
- * survey of 2 clusters (VLT+): Richard et al. (2006) ~10 candidates
- * Richard et al. (2008): 6 clusters with ACS+NICMOS --> ~10 candidates
- * « Bright » z~7.6 galaxy in A1689: Bradley et al. (2008)
- * TODAY: 3 new « bright » z~6-6.5 galaxies: Zheng, Bradley et al. (2009)

Found in blank fields:

LAE: found with SUBARU - z=6.56, 6.96 (Iye et al. 2008, Ota et al. 2008)

LBGs: Bouwens et al. (2007, 2009), Labbé et al. (2006): 2-4 z~7 galaxies Henry et al. (2008 - but refuted in 2009)

PROBLEM: faint (SFR<~10-20 or less) -- too faint for IR-mm followup,
 except if strongly lensed!</pre>

A lensed LAE at z=6.56: multi-wavelength approach

Observations of Abell 370 HCM6A: Hu et al. (2002)

- BVRIZJHK (Keck, SUBARU)
- Lyα emission
- magnification μ~4.5
- also detected at 3.6 and 4.5 micron (IRAC/Spitzer)

SFR(UV) ~ 5.6 M_{\odot}/yr SFR(Lya) ~ factor >~5 lower

Hu et al. (2002)

Chary et al. (2005), Lai et al. (2009)

A lensed LAE at z=6.56: multi-wavelength approach

Observations of Abell 370 HCM6A: BVRIZJHK (Keck, SUBARU), Lyα emission ,magnification μ~4.5 (Hu et al. 2002)

Spectral fitting: to reconcile SED + Ly α emission --> short bursts excluded

 \rightarrow SFR=const + non-negligible extinction (A_V~1)

 \rightarrow a dusty z=6.56 galaxy !?

LAE at z=6.56: multi-wavelength approach

Deep 1.2mm observations of HCM6A (30m IRAM): non-detection <1.08 mJy (3σ)

- Dust mass $< 5.3 \ 10^7 \ M_{\odot}$. No strong constraint on production from SNII.
- SFR(IR) <~35 M_{\odot} / yr just compatible with SFR(UV) and SFR(Lya)
- SED: ULIRG type excluded, ressembles likely SED of normal or dwarf galaxies

	$T_{\rm d} = 18$	$T_{\rm d} = 36$	$T_{\rm d} = 54$
Dust mass	$< 7.0 \times 10^{8}$	$< 5.3 \times 10^{7}$	$< 1.5 \times 10^{7}$
$L_{\rm FIR}$	$< 6.4 \times 10^{10}$	$< 2.1 \times 10^{11}$	$< 5.4 \times 10^{11}$
SFR(IR)	< 11	< 35	< 87
$L_{ m bel}$		$(1-4) \times 10^{11}$	
$SFR_{UV}(A_v = 1)$		11-41	
$SFR_{1,y\alpha}(A_v = 1)$		7-12	
$SFR_{UV}(A_v = 0)$		5.6	
$SFR_{Ly\alpha}(A_{\nu}=0)$		0.4-0.8	

Gravitational lensing + deep observations ==> Upper limits on (M_d, SFR, L_{FIR}) for LAE at z=5.7..6.5 improved by factor 8-20! (cf. Webb et al. 2007, Carilli et al. 2007)

Boone, Schaerer et al. (2007)

LAE at z=6.56: multi-wavelength approach

Deep 1.2mm observations of HCM6A (30m IRAM): non-detection <1.08 mJy (3σ)

• L(FIR)/L(UV)<~ 2 cf. earlier limits: 2 LAE at z~6.5 observed with SCUBA --> L(FIR)/L(UV)<35 (Webb et al. 2007)

• --> First constraint on evolution of dust content in UV selected SF galaxies with redshift

Burgarella et al. (2007, 2009) Boone, Schaerer et al. (2007)

LAE at z=6.56: multi-wavelength approach

- HCM6A: $L(Ly\alpha)=2$. 10^{42} erg/s corresponds to faintest/most numerous LAE known at $z\sim6.6$
- SFR(IR) and number density N(>L)~7.10⁻⁴ Mpc⁻³
- →Estimate of the obscured SFR density (SFRD) of LAE at z=6.6 (upper limit)
- \rightarrow With LF(Ly α) --> lower limit for SFRD
- \Rightarrow Intense star formation at z >~6.6!?

Allowed SFRD range (from LAE at z~6.6)

Kashikawa et al. (2006)

Boone, Schaerer et al. (2007)

Other currently feasible lensed candidates

- z~5 galaxy in RCS0224-002
 (Swinbank et al. 2007): SFR*μ~192
- z~7.6 galaxy in Abell 1689 (Bradley et al. 2008: brightest observed, highly reliable z>7 galaxy candidate found today) SFR* μ ~65
- 4 strongly lensed z>~6 candidates
 (Richard et al. 2008, Bouwens et al. 2009)

Other currently feasible lensed candidates

- Possible evidence for dust from SED fits
- Negative k-correction: detection at mm wavelength possible (IRAM, LABOCA)
- 0.5 mJy RMS reachable in 6 hours ON/OFF

Team: Egami, Kneib, Altieri, Blain, Boone, Combes, Dessauges, Ivison, Lutz, Omont, Pelló, Richard, Rieke, Schaerer, Smail, Smith, van der Werf, Werner, ...

 Systematic near-IR, IR, mm/radio observations of ~50 strong lensing clusters with deep visible observations, good mass models, 24 micron imaging... (+observable with ALMA)

Approved:

- ✓ New HST WFC3 imaging
- ✓ Herschel Lensing Survey (OT Key Programme, ~300h): deep PACS/SPIRE imaging
- ✓ IRAC Lensing Survey (~500 h, warm mission): deep 3.6, 4.5 micron imaging

TBD:

- SCUBA2 + LABOCA: (sub)-mm observations
- eMerlin
- Other follow-up...

Main objectives:

- ✓ Identify and charactise z>6 galaxies
- ✓ Resolve a large fraction of the far-infrared/submillimeter background in the PACS/SPIRE bands
- ✓ Map out full SED of high-z galaxies from mid-infrared to submillimeter (24 micron selected)
- ✓ Probe high-z galaxy population not sampled by 24 micron observations
- ✓ Search for z>6 supernovae
- **√** ...

Also: provide deep legacy fields for ALMA, ground-based near-IR MOS follow-ups, JWST

Simulated PACS (100 mu), SPIRE (250 mu) images

7' x 7' field

Gravitational lensing
--> efficient
detection of z>2
sources due to
reduced confusion!

IRAC Lensing Survey: Achieving JWST Depth with Spitzer

[e.g. 10 nJy (3 σ) reached at 3.6-4.5 μ m for objects with μ ~3 mag]

==> expect detection of >~ 100 galaxies at z~7.5!

Survey area z~6 above given magnification

Sensitivity at z~7.5 based on current LFs

Cumulative counts vs observed mag at z~7.5

Tracing cosmic reionisation with OPTIMOS-EVE @ E-ELT

Lesson from models + blank fields + lensing: Expected number density of z>~7 galaxies at faint magnitudes (28..30 AB): high!!

- •3-100 arcmin⁻² (Δz =1)⁻¹ for z~7..8 and m_AB=28..30
- 40 times higher for FOV 5arcmin diameter and (Δz =2)

Based on models + observations, cf: Chodhoury & Ferrara (2007), Stiavelli et al. (2004), Richard et al. (2008), Bouwens et al. (2008)

Will be imaged with JWST

==> Calls for *very high* multiplex spectrograph at E-ELT including near-IR

Tracing cosmic reionisation with OPTIMOS-EVE @ E-ELT

OPTIMOS-EVE:

- 0.4 1.6 micron
- R~5000-20'000
- FOV: 5 arcmin diameter
- •High multiplex: 300-500!
- →measure Lya fluxes + profiles
 of SF galaxies from z~6 to 12
 →Trace reionisation history
 →Spectroscopic follow-up of
 faintest galaxies

Summary

- Gravitational lensing offers unique views on faint, z>6 galaxies
- First interesting limits on dust emission from « normal » z>6 galaxies
- Several new strongly lensed z~5-8 candidates feasible with current mm facilities (IRAM+)
- New Lensing Survey: ~50 clusters with HST, Spitzer, Herschel, ... --> ideal fields for ALMA!
- E-ELT: need for *very* high multiplex spectrograph to follow-up numerous population of faintest galaxies (e.g. OPTIMOS-EVE)

