Extragalactic imaging surveys with VST and VISTA

Konrad Kuijken Leiden Observatory

ESO's VST public surveys

VPHAS+: galactic plane Uvx, $H\alpha$

ATLAS: Southern Sloan

KiDS: Deep/wide lensing survey

ESO's VISTA public surveys

UltraVISTA: very deep COSMOS field

VVV: Milky Way bulge/disk

VIDEO: SWIRE fields

VHS: shallow hemisphere map

VMC: Clouds

VIKING: KiDS-IR

LEIDEN GRONINGEN MUNCHEN PARIS NAPLES BONN EDINBURGH CAMBRIDGE IMPERIAL

- Big astronomical survey, starts in 2009;
 - 1500 square degrees map (= area of South America on Earth globe)
 - Many applications incl. studying dark matter and dark energy
- Will use millions of ordinary galaxies as `lenses'
 - Average signal → high accuracy
 - Determine redshifts from colours measured with 9 filters
- Measure ripples from galaxy distribution on sky
- Cf. Sloan Survey:
 - Images 2 x sharper (equiv to map of Earth at 6m resolution!)
 - Will include sources 6 x fainter
- Data volume: 15 terabyte pixel data, +++
 - Astro-WISE data archiving / processing system (with EU funding)
 - Large team!

250 nights

VISTA

4m telescope

0.6 sq.deg. InfraRed camera

16 2kx2k detectors
0.35" pixels

KIDS vs. SDSS, CFHTLS

SDSS	CFHTLS
6 x area	1/9th area
2 mag shallower	1 mag deeper
2x worse seeing	~same

Survey parameters

- Area covered
- Median redshift
- Image quality
- Wavelength coverage

KIDS + VIKING

- VST/OmegaCAM: 1 sq deg, 2.6m telescope
- VISTA/VISTACAM: 0.6 sqdeg, 4m telescope
- 1500 sq.deg. of ugri (~400n VST)
 + ZYJHK (~200n VISTA)
- Deeper in r, with good seeing
- VST 2m deeper than SDSS (1m shallower than CFHTLS)
- VISTA 1.5m deeper than UKIDSS

Dark (50%)	<0.7" (40%)	0.7- 0.85" (20%) g'	0.85- 1.1" (20%) u'
Grey (15%)	-	-	-
Bright (35%)	i'	i'	i'

filter	Exp (s)	5-σ 2" AB	cf. UKIDSS
Z	500	23.1	-
Υ	400	22.4	+1.6
J	400	22.2	+1.8
Н	300	21.6	+1.6
K	500	21.3	+1.3

filter	Exp time (s)	Medn seeing (")	5-σ 2" AB
u'	900	1.0	24.8
g'	900	0.75	25.4
r'	1800	0.6	25.2
i'	1080	0.75	24.2

GAMA

Galaxy And Mass Assembly

- Redshift survey to r=19.8
 - 2,000 gals/sq.deg.
 - 140 sq.deg. Total
 - $-AA\Omega 2008-2010$

March: 15 nights, 35000 redshifts!

Add to 2dF and SDSS spectra in hand!

H1K

SLEWS: Spitzer postcryo

N: CFHTLS (150)

S: VIKING/H1K (150)

- Herschel Key programme
 - 550 sq.deg. awarded:250 in KiDS-S, 150 in KiDS-N

 Dark matter distribution through weak lensing

- Collateral damage:
 - Galaxy evolution as related to environment
 - Cluster counts/samples
 - Stellar halo
 - Faint end of stellar Lum.Fn.
 - High-z qso's

QuickTime™ and a YUV420 codec decompressor are needed to see this picture.

Measuring weak lensing

Gravitational deflection by large-scale structure

Systematic distortions / alignments of background galaxies

Statistical effect on top of `shape noise'

Measurement requires good seeing

Photo-z from KIDS/UKIDSS

Scatter further reduced with deeper IR data

Typical Spectra (r~24, redshift~1)

3% photo-z accuracy - waw?

Dark matter / weak lensing

- Mass concentrations along line of sight deflect light rays.
 Gradient → distortion → correlated ellipticities
- Probe of
 - Galaxy halos: mass, extent, shape
 - Large scale structure *mass* power spectrum
- As function of source redshift:
 - Growth history \rightarrow H(z)
 - Angular-diameter / redshift relation \rightarrow H(z)
 - Separate probes of dark energy physics `w'
 - Combination tests for consistency of General Relativity

Galaxy-galaxy lensing

45 sq. deg from RCS survey (Hoekstra, Yee, Gladders 2004)

Galaxy-mass correlation

Halo radii

Halo shapes

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

> QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

KIDS:

6x smaller errors (#pairs)

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

Good photo-z's (b/g), spectroscopic z's (lenses)

Study effect by galaxy type, scaling relations

LENS EFFECT DEPENDS ON DISTANCE TO THE SOURCE

$$\theta$$
- β = $\alpha D_{ls}/D_{s}$

LENS EFFECT DEPENDS ON MASS OF THE LENS

$$\theta$$
- β = $\alpha D_{ls}/D_{s}$

Baryon Acoustic Oscillations

(P. Schuecker)

Angular corr.fn.

60 million gals 3% photo-z

Can trace baryon oscillations

3 handles on w from KiDS

- Cosmic shear: growth of structure
- Baryon oscillation bumps in angular corr. fn. (angular diameterredshift relation)
- Galaxy-galaxy lensing: shear dependence on source redshift (angular diameter-redshift relation)

Conclusions

- Weak lensing + redshifts
 - Powerful probe of cosmology

- Photometric redshifts must be very well calibrated
 - Spectroscopy of large and representative sample