Nota de prensa

Nieve en un sistema solar muy joven

Una frontera helada para la formación de planetas y cometas

18 de Julio de 2013

Por primera vez se ha obtenido una imagen de una línea de nieve en un remoto sistema solar sumamente joven. La línea de nieve, situada en el disco que rodea a la estrella de tipo solar TW Hydrae, promete revelarnos más sobre la formación de planetas y cometas, los factores que influyen en su composición y la historia de nuestro Sistema Solar. Los resultados se publican hoy en la revista Science Express.

Utilizando el Atacama Large Millimeter/submillimeter Array (ALMA), los astrónomos  han obtenido la primera imagen de una línea de nieve en un sistema solar bebé. En la Tierra, las líneas de nieve se forman a grandes altitudes en las que las temperaturas, al bajar, transforman la humedad del aire en nieve. Esta línea puede verse claramente en una montaña, en la que vemos bien delimitada la cumbre nevada y la zona en la que comenzamos a distinguir la superficie rocosa, libre de nieve.

Las líneas de nieve en torno a estrellas jóvenes se forman de un modo similar, en las regiones más alejadas y frías de los discos a partir de los cuales se forman los sistemas planetarios. Comenzando en la estrella y moviéndose hacia fuera, el agua (H2O) es la primera en congelarse, formando la primera línea de nieve. Más allá de la estrella, a medida que la temperatura cae, otras moléculas más exóticas pueden llegar a congelarse y convertirse en nieve, como es el caso del dióxido de carbono (CO2), el metano (CH4), y el monóxido de carbono (CO). Estos diferentes tipos de nieve dan a los granos de polvo una cobertura externa que ejerce como pegamento y juega un papel esencial a la hora de ayudar a estos granos a superar su habitual tendencia a romperse tras una colisión, permitiéndoles, por el contrario, convertirse en piezas fundamentales para la formación de planetas y cometas. La nieve, además, aumenta la cantidad de materia sólida disponible y puede acelerar de forma sorprendente el proceso de formación planetaria.

Cada una de estas diferentes líneas de nieve — para el agua, el dióxido de carbono, el metano y el monóxido de carbono — puede estar relacionada con la formación de diferentes tipos de planetas [1]. Alrededor de una estrella parecida a nuestro Sol, en un sistema solar similar, la línea de nieve del agua se correspondería con la distancia que hay entre las órbitas de Marte y Júpiter, y la línea de nieve del monóxido de carbono se correspondería con la órbita de Neptuno.

La línea de nieve detectada por ALMA es la primera detección de una línea de nieve de monóxido de carbono entorno a TW Hydrae, una estrella joven que se encuentra a 175 años luz de la Tierra. Los astrónomos creen que este incipiente sistema solar comparte muchas características con nuestro propio Sistema Solar cuando tenía tan solo unos pocos millones de años.

ALMA nos ha proporcionado la primera imagen real de una línea de nieve en torno a una estrella joven, los cual es extremadamente emocionante, ya que esto nos habla de un periodo muy temprano en la historia de nuestro Sistema Solar” afirma Chunhua “Charlie” Qi (Harvard-Smithsonian Center for Astrophysics, Cambridge, EE.UU.) uno de los dos autores principales del artículo. “Ahora podemos ver detalles antes ocultos sobre las lejanas regiones heladas de otro sistema solar similar al nuestro”.

Pero la presencia de monóxido de carbono podría tener consecuencias más allá de la simple formación de planetas. El monóxido de carbono es necesario para la formación del metanol, pieza fundamental de las moléculas orgánicas, más complejas y esenciales para la vida. Si los cometas transportasen estas moléculas a planetas en formación similares a la Tierra, entonces esos planetas estarían equipados con los ingredientes necesarios para la vida.

Hasta ahora, nunca se habían obtenido imágenes directas de las líneas de nieve porque siempre se forman en el plano central del disco protoplanetario, una zona relativamente estrecha, de manera que no podían precisarse su ubicación ni su tamaño. Por encima y debajo de esta estrecha región en la que se encuentran las líneas de nieve, la radiación estelar impide la formación de hielos. La concentración de polvo y gas en el plano central es necesaria para proteger el área de la radiación, de manera que el monóxido de carbono y otros gases puedan enfriarse y congelarse.

Con la ayuda de un truco muy ingenioso, este equipo de astrónomos logró penetrar en el disco y mirar muy de cerca dónde se formaba la nieve. En lugar de buscar nieve — dado que no puede observarse directamente — buscaron una molécula conocida como  diazinio (diazenylium) (N2H+), que brilla intensamente en la parte milimétrica del espectro y es, por tanto, un objetivo perfecto para un telescopio como ALMA. Esta frágil molécula se destruye con facilidad en presencia de gas monóxido de carbono, por lo que solo aparecería, en cantidades detectables, en regiones en las que el monóxido de carbono se hubiese transformado en nieve y no pudiese destruirlo. Esencialmente, la clave para encontrar nieve de monóxido de carbono está en encontrar diazinio.

La extraordinaria sensibilidad de ALMA y su alta resolución han permitido a los astrónomos rastrear la presencia y la distribución del diazinio y encontrar un límite claro y definido, situado aproximadamente a unas 30 unidades astronómicas de la estrella (30 veces la distancia entre la Tierra y el Sol). De hecho, esto proporciona una imagen negativa de la nieve de monóxido de carbono en el disco que rodea a TW Hydrae, lo cual puede utilizarse para ver con precisión la línea de nieve del monóxido de carbono en el lugar en que las teorías predicen que debería estar — el borde interior del anillo de diazinio.

"Para estas observaciones tan solo utilizamos 26 de las 66 antenas que componen el total de ALMA. En otras observaciones de ALMA ya hay indicios de líneas de nieve alrededor de otras estrellas, y estamos convencidos de que futuras observaciones, con todo el conjunto de antenas, revelarán mucho más y proporcionarán mucha más información reveladora sobre la formación y evolución de los planetas. Espere y verá”, concluye Michiel Hogerheijde, del Observatorio de Leiden, en los Países Bajos.

Notas

[1] Por ejemplo, los planetas rocosos y secos se forman en la parte interior de la línea de nieve del agua (más cerca de la estrella), donde solo puede existir el polvo. En el otro extremo se encuentran los planetas gigantes gaseosos, que se forman más allá de la línea de nieve del monóxido de carbono.

Información adicional

El Atacama Large Millimeter/submillimeter Array (ALMA), una instalación astronómica internacional, es una colaboración entre Europa, América del Norte y Asia Oriental  en cooperación con la República de Chile. ALMA está financiado en Europa por ESO, en América del Norte por la fundación Nacional de Ciencia de los Estados Unidos (NSF) en cooperación con el Consejo Nacional de Investigación de Canadá (NRC) y el Consejo Nacional de Ciencias (NSC) de Taiwán (NSC); y en Asia Oriental  por los Institutos Nacionales de Ciencias Naturales de Japón (NINS) en cooperación con la Academia Sinica (AS) de Taiwán.  La construcción y operaciones de ALMA en Europa están lideradas por ESO; en América del Norte por el National Radio Astronomy Observatory (NRAO), gestionado por Associated Universities, Inc. (AUI); y en Asia Oriental por el Observatorio Astronómico Nacional de Japón (NAOJ). El Joint ALMA Observatory (JAO) proporciona al proyecto la unificación tanto del liderazgo como de la gestión de la construcción, puesta a punto y operación de ALMA.

Esta investigación se presenta en el artículo que aparece en el número del 18 de julio de 2013 en la revista Science Express.

El equipo está compuesto por C. Qi (Harvard-Smithsonian Center for Astrophysics, EE.UU.); K. I. Öberg (Departamentos de Química y Astronomía, Universidad de Virginia, EE.UU.); D. J. Wilner (Harvard-Smithsonian Center for Astrophysics, EE.UU.); P. d’Alessio (Centro de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, México); E. Bergin (Departamento de Astronomía, Universidad de Michigan, EE.UU.); S. M. Andrews (Harvard-Smithsonian Center for Astrophysics, EE.UU.); G. A. Blake (División de Ciencias Geológicas y Planetarias, Instituto Tecnológico de California, EE.UU.); M. R. Hogerheijde (Observatorio de Leiden, Universidad de Leiden, Países Bajos); y E. F. van Dishoeck (Instituto Max Planck de Física Extraterrestre, Alemania).

Qi y Öberg han sido los autores principales de este artículo.

ESO es la principal organización astronómica intergubernamental de Europa y el observatorio astronómico más productivo del mundo. Cuenta con el respaldo de quince países: Alemania, Austria, Bélgica, Brasil, Dinamarca, España, Finlandia, Francia, Holanda, Italia, Portugal, el Reino Unido, República Checa, Suecia y Suiza. ESO desarrolla un ambicioso programa centrado en el diseño, construcción y operación de poderosas instalaciones de observación terrestres que permiten a los astrónomos hacer importantes descubrimientos científicos. ESO también desarrolla un importante papel al promover y organizar la cooperación en investigación astronómica. ESO opera en Chile tres instalaciones de observación únicas en el mundo: La Silla, Paranal y Chajnantor. En Paranal, ESO opera el Very Large Telescope, el observatorio óptico más avanzado del mundo, y dos telescopios de rastreo. VISTA (siglas en inglés de Telescopio de Rastreo Óptico e Infrarrojo para Astronomía) trabaja en el infrarrojo y es el telescopio de rastreo más grande del mundo, y el VST (VLT Survey Telescope, Telescopio de Rastreo del VLT) es el telescopio más grande diseñado exclusivamente para rastrear el cielo en luz visible. ESO es el socio europeo de un revolucionario telescopio, ALMA, el proyecto astronómico más grande en desarrollo. Actualmente ESO está planificando el European Extremely Large Telescope, E-ELT, el telescopio óptico y de infrarrojo cercano de 39 metros, que llegará a ser “el ojo más grande del mundo para mirar el cielo”.

Las traducciones de las notas de prensa de ESO las llevan a cabo miembros de la Red de Divulgación de la Ciencia de ESO (ESON por sus siglas en inglés), que incluye a expertos en divulgación y comunicadores científicos de todos los países miembros de ESO y de otras naciones.

El
nodo español de la red ESON está representado por J. Miguel Mas Hesse y Natalia Ruiz Zelmanovitch.

Enlaces

Contactos

Chunhua Qi
Harvard-Smithsonian Center for Astrophysics
Cambridge, Mass., USA
Teléfono: +1 617 495 7087
Correo electrónico: cqi@cfa.harvard.edu

Michiel Hogerheijde
Leiden Observatory
Leiden, The Netherlands
Teléfono: +31 6 4308 3291
Correo electrónico: michiel@strw.leidenuniv.nl

Richard Hook
ESO, Public Information Officer
Garching bei München, Germany
Teléfono: +49 89 3200 6655
Celular: +49 151 1537 3591
Correo electrónico: rhook@eso.org

Francisco Rodríguez (Contacto para medios de comunicación en Chile)
Red de Difusión Científica de ESO y European Southern Observatory
Teléfono: +56-2-463-3151
Correo electrónico: eson-chile@eso.org

Connect with ESO on social media

Esta es una traducción de la nota de prensa de ESO eso1333.

Acerca de la nota de prensa

Nota de prensa No.:eso1333es-cl
Nombre:TW Hydrae
Tipo:Milky Way : Star : Circumstellar Material
Facility:Atacama Large Millimeter/submillimeter Array
Science data:2013Sci...341..630Q

Imágenes

Impresión artística de las líneas de nieve en torno a TW Hydrae
Impresión artística de las líneas de nieve en torno a TW Hydrae
Imagen de ALMA de la línea de nieve del monóxido de carbono
Imagen de ALMA de la línea de nieve del monóxido de carbono
Distancia de la línea de nieve comparada con el Sistema Solar
Distancia de la línea de nieve comparada con el Sistema Solar