What you’ll discover in this blog post:
  • What an exoplanet is.
  • Different methods to detect an exoplanet.
  • How astronomers use different telescopes to do so.

We humans have always pondered the question: “Are we alone in the Universe?”. A vital key in answering this philosophical question is discovering potential habitable worlds outside of our own Solar System. But how do we do this?

Exoplanets are planets beyond our Solar System that orbit stars other than the Sun. The first exoplanets were discovered back in 1992 by Aleksander Wolszczan and Dale Frail. Oddly enough, they didn’t orbit a normal star, like our Sun, but a pulsar –– a compact and rapidly rotating stellar corpse. In 1995 Michel Mayor and Didier Queloz found the first exoplanet around a Sun-like star, for which they were awarded the Physics Nobel Prize in 2019.

As of today there are more than 5000 confirmed exoplanets, a number that keeps rising steadily. Despite what this huge number may suggest, finding exoplanets is no walk in the park. This is because planets themselves emit very little or no light of their own. Instead, they reflect their parent stars' light, which shines much more brightly in comparison. Seeing the light from a distant exoplanet is like spotting a dim candle in front of a raging forest fire. So, astronomers had their work cut out in their hunt for them!

In this article we’ll tell you about some of the methods astronomers use to detect and study exoplanets with modern astronomical facilities, including those at ESO’s observatories.

The radial velocity method

Stars and their exoplanets are bound together by gravity. When a planet orbits a star, both of them are actually moving around their common centre of mass. This makes the star wobble back and forth, leading to small variations in the speed — or radial velocity — of the star, which betray the presence of a planet even if we can’t see it.

Astronomers can detect and measure these subtle changes in a star’s speed using spectroscopy, a technique that decomposes the light of an astronomical object into its constituent colours. A star’s spectrum contains dark lines due to certain chemical elements absorbing very specific colours. When a star moves towards us or away from us those lines shift to bluer or redder colours, respectively, due to something called the Doppler effect –– the same phenomenon that changes the pitch of a siren when a vehicle is approaching us or moving away. 51 Pegasi b, the planet that earned Mayor and Queloz their Nobel prize, was discovered this way.

However, planet detectives need to be extra vigilant with this method as the effect has a very small impact on the parent star. Even Jupiter, the largest planet in our Solar System, makes the Sun wobble by only 13 m/s during its orbit. So, as you can imagine, this minute effect can only be detected by very sensitive instruments.

One of such instruments is the High Accuracy Radial velocity Planet Searcher (HARPS) attached to ESO’s 3.6-metre telescope at our La Silla Observatory in Chile. HARPS is so precise it can pick up tiny changes in a star’s speed of around 1 m/s or 3.5 km/h –– a gentle walking pace! At one point HARPS was responsible for two thirds of all the known exoplanets with masses less than that of Neptune. It also brought in the first planet around a star almost identical to the Sun, and thanks to the observations with this instrument, astronomers calculated that there are billions of rocky planets around red dwarfs in the Milky Way, the most abundant type of star in our galaxy.

HARPS also uncovered clear evidence of a planet orbiting Proxima Centauri, the closest star to Earth after the Sun, approximately four light-years away. Proxima’s rocky world, a little more massive than Earth, has a temperature suitable for liquid water to exist on its surface, a major breakthrough in exoplanet research.

About 500 km north of La Silla we find ESO’s Paranal Observatory, which hosts another powerful planet hunter: ESPRESSO, the Echelle SPectrograph for Rocky Exoplanet and Stable Spectroscopic Observations, mounted on ESO’s Very Large Telescope (VLT). In many ways ESPRESSO is the successor of HARPS: it’s extremely stable, and it can use any of the 8-m telescopes of the VLT, thus gathering more light and detecting even tinier stellar wobbles.

ESPRESSO recently discovered a second planet around Proxima Centauri; at just a quarter of Earth’s mass, this is one of the lightest exoplanets known. And it was also used to study an interesting planetary system around the star TOI-178, where planets orbit in harmonious resonance as illustrated in the video below.

Artist’s impression of the planetary system around TOI-178. The orbital periods of the 5 outermost planets are in resonance, meaning that some planets align with each other every few orbits. In this animation, each planet has been assigned a different musical tone, creating harmonious chords when two or more planets are aligned.
Credit: ESO/L. Calçada

The transit method

When a planet passes between its parent star and us, it blocks a small fraction of the starlight from reaching us, creating a periodic dip in the brightness of the star which can be detected at Earth. This method is called transit photometry, and as of today it’s responsible for 75% of all known exoplanets, mostly thanks to NASA’s Kepler Space Telescope.

The change in brightness is a very minute effect. So much so, that it can be comparable to small, unrelated changes in the star’s surface brightness itself such as starspots. Therefore, astronomers have had “false positive” detections of exoplanets and need to be careful before announcing their discovery.

Transits can also be timed to reveal the presence of additional planets. Say we already know a star has its own planet, which creates periodic dips in the brightness of the star. But when we carefully measure when these dips happen, we notice that sometimes they occur a bit earlier or later than predicted. This can be an indication of the presence of an extra planet, whose gravitational pull alters the motion of the first one. This is called “transit timing variation”, and it’s a powerful method to detect planets through their influence on their siblings.

Animation illustrating the small dip in a star’s brightness as a planet crosses in front of it.
Credit: ESO/L. Calçada

Perhaps the best-known planetary system discovered via transits is TRAPPIST-1, a system of seven planets orbiting a cold dwarf star about 40 light-years away. Some of them are at the right distance from the star to perhaps host liquid water. This system has both the largest number of Earth-sized planets found to date and the largest number of worlds that could support liquid water on their surfaces, a huge win for planet detectives.

The system takes its name from the TRAPPIST–South telescope, led by the University of Liège in Belgium in collaboration with the Geneva Observatory in Switzerland, and installed at ESO’s La Silla Observatory. Many other facilities have been used to study the transits in TRAPPIST-1, including NASA’s Spitzer Space Telescope, and ESO’s hawk-eyed High Acuity Wide-field K-band Imager (HAWK-I) instrument at the VLT.

ESO’s Paranal and La Silla observatories are in fact home to several so-called “hosted telescopes” led by other institutions which are devoted to planetary transits. Besides the aforementioned TRAPPIST-South there’s the also Belgium-led SPECULOOS, the Next-Generation Transit Survey (NGTS), MASCARA and ExTrA. These telescopes constantly scan the sky, looking for periodic dips in the brightness of thousands of stars.

Direct imaging

Even though the previous methods allow us to unambiguously detect exoplanets, they are indirect in that they rely on the effects that said planets exert on their host stars. But is it possible to actually take direct images of exoplanets? The answer is yes, but it’s extremely challenging.

Planets are buried under the glare of the stars they orbit; if you are observing from Earth, this image is made fuzzier by the turbulence in Earth’s atmosphere, which blurs the images of astronomical objects. To correct for the latter, astronomers use a technique called adaptive optics, whereby a small deformable mirror reshapes itself hundreds or even thousands of times per second to counteract the turbulence, monitoring a reference target in real time.

Using this technique, ESO’s NACO instrument at the VLT took the first ever picture of an exoplanet back in 2005, a ground-breaking feat for astronomy. The planet is about 5 times more massive than Jupiter and it orbits a brown dwarf, a small star with 13-14 times the mass of Jupiter.

This system was somewhat special in that it comprises a rather big planet orbiting a very small star, so their relative brightness are not dramatically different. But what happens when the parent star is millions or even billions of times brighter than the planet we want to image? In this case adaptive optics alone isn’t enough: besides correcting atmospheric turbulence we also need to somehow block the light of the star. Therefore, direct imaging instruments are usually equipped with devices called coronagraphs, which mask the light of the star, creating a sort of artificial eclipse inside the instrument.

NACO is now retired, but ESO still has one of the most advanced direct imaging instruments: SPHERE, the Spectro-Polarimetric High contrast imager for Exoplanet REsearch, mounted on the VLT. Since first beginning its pursuit of exoplanets in 2014, SPHERE has tracked a stunning time-lapse of an exoplanet orbit, took the first ever image of a multi-planet system around a Sun-like star, and even managed to image a newborn exoplanet for the first time.

What’s next?

Detecting exoplanets and their basic properties such as their mass or size already tells us a lot about them and how they formed. But astronomers are also interested in studying their atmospheres, and perhaps find biomarkers that could betray the presence of life.

One way to do so is to study transits at different wavelengths, analysing which colours of the star’s spectrum are absorbed or scattered by different chemicals in the planet’s atmosphere. An even more challenging approach is to directly take a spectrum of the planet itself.

While this is now mostly done on giant gas planets, astronomers want to eventually study the atmospheres of small rocky worlds like Earth, which requires much larger telescopes capable of detecting such faint sources. The hunt for exoplanets will thus benefit from future giant observatories, such as ESO’s 39-metre Extremely Large Telescope currently under construction in Chile and set for first light by the end of the decade, which will allow astronomers to uncover the secrets of exoplanets with unprecedented detail.

Biography Juliet Hannay

Juliet Hannay is part of the science communications team at ESO. She is a former student of the University of Glasgow acquiring a Bachelors and Masters degree in Astronomy and Physics. Juliet found a passion for science outreach and communication through her roles as Outreach Convenor, Vice President and President for the Women in STEM society and specialist editor for the Glasgow Insight into Science and Technology magazine.

Biography Juan Carlos Muñoz Mateos

Juan Carlos Muñoz Mateos is Media Officer at ESO in Garching and editor of the ESO blog. He completed his PhD in astrophysics at Complutense University in Madrid (Spain). Previously he worked for several years at ESO in Chile, combining his research on galaxy evolution with duties at Paranal Observatory.

Schicken Sie uns Ihre Kommentare!
Abonnieren Sie Nachrichten der ESO in Ihrer Sprache
Beschleunigt durch CDN77
Allgemeine Geschäftsbedingungen
Cookie Settings and Policy

Our use of Cookies

We use cookies that are essential for accessing our websites and using our services. We also use cookies to analyse, measure and improve our websites’ performance, to enable content sharing via social media and to display media content hosted on third-party platforms.

You can read manage your cookie preferences and find out more by visiting 'Cookie Settings and Policy'.

ESO Cookies Policy


The European Organisation for Astronomical Research in the Southern Hemisphere (ESO) is the pre-eminent intergovernmental science and technology organisation in astronomy. It carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities for astronomy.

This Cookies Policy is intended to provide clarity by outlining the cookies used on the ESO public websites, their functions, the options you have for controlling them, and the ways you can contact us for additional details.

What are cookies?

Cookies are small pieces of data stored on your device by websites you visit. They serve various purposes, such as remembering login credentials and preferences and enhance your browsing experience.

Categories of cookies we use

Essential cookies (always active): These cookies are strictly necessary for the proper functioning of our website. Without these cookies, the website cannot operate correctly, and certain services, such as logging in or accessing secure areas, may not be available; because they are essential for the website’s operation, they cannot be disabled.

Cookie ID/Name
Description/Purpose
Provider (1st party or 3rd party)
Browser session cookie or Stored cookie?
Duration
csrftoken
XSRF protection token. We use this cookie to protect against cross-site request forgery attacks.
1st party
Stored
1 year
user_privacy
Your privacy choices. We use this cookie to save your privacy preferences.
1st party
Stored
6 months
_grecaptcha
We use reCAPTCHA to protect our forms against spam and abuse. reCAPTCHA sets a necessary cookie when executed for the purpose of providing its risk analysis. We use www.recaptcha.net instead of www.google.com in order to avoid unnecessary cookies from Google.
3rd party
Stored
6 months

Functional Cookies: These cookies enhance your browsing experience by enabling additional features and personalization, such as remembering your preferences and settings. While not strictly necessary for the website to function, they improve usability and convenience; these cookies are only placed if you provide your consent.

Cookie ID/Name
Description/Purpose
Provider (1st party or 3rd party)
Browser session cookie or Stored cookie?
Duration
Settings
preferred_language
Language settings. We use this cookie to remember your preferred language settings.
1st party
Stored
1 year
ON | OFF
sessionid
ESO Shop. We use this cookie to store your session information on the ESO Shop. This is just an identifier which is used on the server in order to allow you to purchase items in our shop.
1st party
Stored
2 weeks
ON | OFF

Analytics cookies: These cookies collect information about how visitors interact with our website, such as which pages are visited most often and how users navigate the site. This data helps us improve website performance, optimize content, and enhance the user experience; these cookies are only placed if you provide your consent. We use the following analytics cookies.

Matomo Cookies:

This website uses Matomo (formerly Piwik), an open source software which enables the statistical analysis of website visits. Matomo uses cookies (text files) which are saved on your computer and which allow us to analyze how you use our website. The website user information generated by the cookies will only be saved on the servers of our IT Department. We use this information to analyze www.eso.org visits and to prepare reports on website activities. These data will not be disclosed to third parties.

On behalf of ESO, Matomo will use this information for the purpose of evaluating your use of the website, compiling reports on website activity and providing other services relating to website activity and internet usage.

ON | OFF

Matomo cookies settings:

Cookie ID/Name
Description/Purpose
Provider (1st party or 3rd party)
Browser session cookie or Stored cookie?
Duration
Settings
_pk_id
Stores a unique visitor ID.
1st party
Stored
13 months
_pk_ses
Session cookie temporarily stores data for the visit.
1st party
Stored
30 minutes
_pk_ref
Stores attribution information (the referrer that brought the visitor to the website).
1st party
Stored
6 months
_pk_testcookie
Temporary cookie to check if a visitor’s browser supports cookies (set in Internet Explorer only).
1st party
Stored
Temporary cookie that expires almost immediately after being set.

Additional Third-party cookies on ESO websites: some of our pages display content from external providers, e.g. YouTube.

Such third-party services are outside of ESO control and may, at any time, change their terms of service, use of cookies, etc.

YouTube: Some videos on the ESO website are embedded from ESO’s official YouTube channel. We have enabled YouTube’s privacy-enhanced mode, meaning that no cookies are set unless the user actively clicks on the video to play it. Additionally, in this mode, YouTube does not store any personally identifiable cookie data for embedded video playbacks. For more details, please refer to YouTube’s embedding videos information page.

Cookies can also be classified based on the following elements.

Regarding the domain, there are:

As for their duration, cookies can be:

How to manage cookies

Cookie settings: You can modify your cookie choices for the ESO webpages at any time by clicking on the link Cookie settings at the bottom of any page.

In your browser: If you wish to delete cookies or instruct your browser to delete or block cookies by default, please visit the help pages of your browser:

Please be aware that if you delete or decline cookies, certain functionalities of our website may be not be available and your browsing experience may be affected.

You can set most browsers to prevent any cookies being placed on your device, but you may then have to manually adjust some preferences every time you visit a site/page. And some services and functionalities may not work properly at all (e.g. profile logging-in, shop check out).

Updates to the ESO Cookies Policy

The ESO Cookies Policy may be subject to future updates, which will be made available on this page.

Additional information

For any queries related to cookies, please contact: pdprATesoDOTorg.

As ESO public webpages are managed by our Department of Communication, your questions will be dealt with the support of the said Department.