Press Release
Young Stars Poised for Production of Rocky Planets
VLT Interferometer Studies the Inner Region of Circumstellar Discs
24 November 2004
One of the currently hottest astrophysical topics - the hunt for Earth-like planets around other stars - has just received an important impetus from new spectral observations with the MIDI instrument at the ESO VLT Interferometer (VLTI). An international team of astronomers [2] has obtained unique infrared spectra of the dust in the innermost regions of the proto-planetary discs around three young stars - now in a state possibly very similar to that of our solar system in the making, some 4,500 million years ago. Reporting in this week's issue of the science journal Nature, and thanks to the unequalled, sharp and penetrating view of interferometry, they show that in all three, the right ingredients are present in the right place to start formation of rocky planets at these stars.
"Sand" in the inner regions of stellar discs
The Sun was born about 4,500 million years ago from a cold and massive cloud of interstellar gas and dust that collapsed under its own gravitational pull. A dusty disc was present around the young star, in which the Earth and other planets, as well as comets and asteroids were later formed.
This epoch is long gone, but we may still witness that same process by observing the infrared emission from very young stars and the dusty protoplanetary discs around them. So far, however, the available instrumentation did not allow a study of the distribution of the different components of the dust in such discs; even the closest known are too far away for the best single telescopes to resolve them. But now, as Francesco Paresce, Project Scientist for the VLT Interferometer and a member of the team from ESO explains, "With the VLTI we can combine the light from two well-separated large telescopes to obtain unprecedented angular resolution. This has allowed us, for the first time, to peer directly into the innermost region of the discs around some nearby young stars, right in the place where we expect planets like our Earth are forming or will soon form".
Specifically, new interferometric observations of three young stars by an international team [2], using the combined power of two 8.2-m VLT telescopes a hundred metres apart, has achieved sufficient image sharpness (about 0.02 arcsec) to measure the infrared emission from the inner region of the discs around three stars (corresponding approximately to the size of the Earth's orbit around the Sun) and the emission from the outer part of those discs. The corresponding infrared spectra have provided crucial information about the chemical composition of the dust in the discs and also about the average grain size.
These trailblazing observations show that the inner part of the discs is very rich in crystalline silicate grains ("sand") with an average diameter of about 0.001 mm. They are formed by coagulation of much smaller, amorphous dust grains that were omnipresent in the interstellar cloud that gave birth to the stars and their discs.
Model calculations show that crystalline grains should be abundantly present in the inner part of the disc at the time of formation of the Earth. In fact, the meteorites in our own solar system are mainly composed of this kind of silicate.
Dutch astronomer Rens Waters, a member of the team from the Astronomical Institute of University of Amsterdam, is enthusiastic: "With all the ingredients in place and the formation of larger grains from dust already started, the formation of bigger and bigger chunks of stone and, finally, Earth-like planets from these discs is almost unavoidable!"
Transforming the grains
It has been known for some time that most of the dust in discs around newborn stars is made up of silicates. In the natal cloud this dust is amorphous, i.e. the atoms and molecules that make up a dust grain are put together in a chaotic way, and the grains are fluffy and very small, typically about 0.0001 mm in size. However, near the young star where the temperature and density are highest, the dust particles in the circumstellar disc tend to stick together so that the grains become larger. Moreover, the dust is heated by stellar radiation and this causes the molecules in the grains to re-arrange themselves in geometric (crystalline) patterns.
Accordingly, the dust in the disc regions that are closest to the star is soon transformed from "pristine" (small and amorphous) to "processed" (larger and crystalline) grains.
VLTI observations
Spectral observations of silicate grains in the mid-infrared wavelength region (around 10 µm) will tell whether they are "pristine" or "processed". Earlier observations of discs around young stars have shown a mixture of pristine and processed material to be present, but it was so far impossible to tell where the different grains resided in the disc.
Thanks to a hundred-fold increase in angular resolution with the VLTI and the highly sensitive MIDI instrument, detailed infrared spectra of the various regions of the protoplanetary discs around three newborn stars, only a few million years old, now show that the dust close to the star is much more processed than the dust in the outer disc regions. In two stars (HD 144432 and HD 163296) the dust in the inner disc is fairly processed whereas the dust in the outer disc is nearly pristine. In the third star (HD 142527) the dust is processed in the entire disc. In the central region of this disc, it is extremely processed, consistent with completely crystalline dust.
An important conclusion from the VLTI observations is therefore that the building blocks for Earth-like planets are present in circumstellar discs from the very start. This is of great importance as it indicates that planets of the terrestrial (rocky) type like the Earth are most probably quite common in planetary systems, also outside the solar system.
The pristine comets
The present observations also have implications for the study of comets. Some - perhaps all - comets in the solar system do contain both pristine (amorphous) and processed (crystalline) dust. Comets were definitely formed at large distances from the Sun, in the outer regions of the solar system where it has always been very cold. It is therefore not clear how processed dust grains may end up in comets.
In one theory, processed dust is transported outwards from the young Sun by turbulence in the rather dense circumsolar disc. Other theories claim that the processed dust in comets was produced locally in the cold regions over a much longer time, perhaps by shock waves or lightning bolts in the disc, or by frequent collisions between bigger fragments.
The present team of astronomers now conclude that the first theory is the most likely explanation for the presence of processed dust in comets. This also implies that the long-period comets that sometimes visit us from the outer reaches of our solar system are truly pristine bodies, dating back to an era when the Earth and the other planets had not yet been formed.
Studies of such comets, especially when performed in-situ, will therefore provide direct access to the original material from which the solar system was formed.
Notes
[1] This ESO press release is issued in collaboration with the Astronomical Institute of the University of Amsterdam, The Netherlands (NOVA PR) and the Max-Planck-Institut für Astronomie (Heidelberg, Germany (MPG PR).
[2] The team consists of Roy van Boekel, Michiel Min, Rens Waters, Carsten Dominik and Alex de Koter (Astronomical Institute, University of Amsterdam, The Netherlands), Christoph Leinert, Olivier Chesneau, Uwe Graser, Thomas Henning, Rainer Köhler and Frank Przygodda (Max-Planck-Institut für Astronomie, Heidelberg, Germany), Andrea Richichi, Sebastien Morel, Francesco Paresce, Markus Schöller and Markus Wittkowski (ESO), Walter Jaffe and Jeroen de Jong (Leiden Observatory, The Netherlands), Anne Dutrey and Fabien Malbet (Observatoire de Bordeaux, France), Bruno Lopez (Observatoire de la Cote d'Azur, Nice, France), Guy Perrin (LESIA, Observatoire de Paris, France) and Thomas Preibisch (Max-Planck-Institut für Radioastronomie, Bonn, Germany).
[3] The MIDI instrument is the result of a collaboration between German, Dutch and French institutes. See eso0319 and eso0236 for more information.
More information
The results reported in this ESO PR are presented in more detail in a research paper "The building blocks of planets within the "terrestrial" region of protoplanetary disks", by Roy van Boekel and co-authors (Nature, November 25, 2004). The observations were made in the course of ESO's early science demonstration programme.
Contacts
Michiel Min
Astronomical Institute University of Amsterdam
Amsterdam, Netherlands
Tel: +31-20-525-7476
Email: mmin@science.uva.nl
Francesco Paresce
ESO
Garching, Germany
Tel: +49-89-3200-6297
Email: fparesce@eso.org
Christoph Leinert
Max-Planck-Institut für Astronomie
Heidelberg, Germany
Tel: +49-6221-528264
Email: leinert@mpia.de
Jakob Staude
Max-Planck-Institut für Astronomie
Heidelberg, Germany
Tel: +49-6221-528229
Email: staude@mpia.de
About the Release
Release No.: | eso0435 |
Legacy ID: | PR 27/04 |
Name: | HD 142527 |
Type: | Milky Way : Star : Circumstellar Material : Disk : Protoplanetary |
Facility: | Very Large Telescope, Very Large Telescope Interferometer |
Instruments: | MIDI |
Science data: | 2004Natur.432..479V |
Our use of Cookies
We use cookies that are essential for accessing our websites and using our services. We also use cookies to analyse, measure and improve our websites’ performance, to enable content sharing via social media and to display media content hosted on third-party platforms.
ESO Cookies Policy
The European Organisation for Astronomical Research in the Southern Hemisphere (ESO) is the pre-eminent intergovernmental science and technology organisation in astronomy. It carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities for astronomy.
This Cookies Policy is intended to provide clarity by outlining the cookies used on the ESO public websites, their functions, the options you have for controlling them, and the ways you can contact us for additional details.
What are cookies?
Cookies are small pieces of data stored on your device by websites you visit. They serve various purposes, such as remembering login credentials and preferences and enhance your browsing experience.
Categories of cookies we use
Essential cookies (always active): These cookies are strictly necessary for the proper functioning of our website. Without these cookies, the website cannot operate correctly, and certain services, such as logging in or accessing secure areas, may not be available; because they are essential for the website’s operation, they cannot be disabled.
Functional Cookies: These cookies enhance your browsing experience by enabling additional features and personalization, such as remembering your preferences and settings. While not strictly necessary for the website to function, they improve usability and convenience; these cookies are only placed if you provide your consent.
Analytics cookies: These cookies collect information about how visitors interact with our website, such as which pages are visited most often and how users navigate the site. This data helps us improve website performance, optimize content, and enhance the user experience; these cookies are only placed if you provide your consent. We use the following analytics cookies.
Matomo Cookies:
This website uses Matomo (formerly Piwik), an open source software which enables the statistical analysis of website visits. Matomo uses cookies (text files) which are saved on your computer and which allow us to analyze how you use our website. The website user information generated by the cookies will only be saved on the servers of our IT Department. We use this information to analyze www.eso.org visits and to prepare reports on website activities. These data will not be disclosed to third parties.
On behalf of ESO, Matomo will use this information for the purpose of evaluating your use of the website, compiling reports on website activity and providing other services relating to website activity and internet usage.
Matomo cookies settings:
Additional Third-party cookies on ESO websites: some of our pages display content from external providers, e.g. YouTube.
Such third-party services are outside of ESO control and may, at any time, change their terms of service, use of cookies, etc.
YouTube: Some videos on the ESO website are embedded from ESO’s official YouTube channel. We have enabled YouTube’s privacy-enhanced mode, meaning that no cookies are set unless the user actively clicks on the video to play it. Additionally, in this mode, YouTube does not store any personally identifiable cookie data for embedded video playbacks. For more details, please refer to YouTube’s embedding videos information page.
Cookies can also be classified based on the following elements.
Regarding the domain, there are:
- First-party cookies, set by the website you are currently visiting. They are stored by the same domain that you are browsing and are used to enhance your experience on that site;
- Third-party cookies, set by a domain other than the one you are currently visiting.
As for their duration, cookies can be:
- Browser-session cookies, which are deleted when the user closes the browser;
- Stored cookies, which stay on the user's device for a predetermined period of time.
How to manage cookies
Cookie settings: You can modify your cookie choices for the ESO webpages at any time by clicking on the link Cookie settings at the bottom of any page.
In your browser: If you wish to delete cookies or instruct your browser to delete or block cookies by default, please visit the help pages of your browser:
Please be aware that if you delete or decline cookies, certain functionalities of our website may be not be available and your browsing experience may be affected.
You can set most browsers to prevent any cookies being placed on your device, but you may then have to manually adjust some preferences every time you visit a site/page. And some services and functionalities may not work properly at all (e.g. profile logging-in, shop check out).
Updates to the ESO Cookies Policy
The ESO Cookies Policy may be subject to future updates, which will be made available on this page.
Additional information
For any queries related to cookies, please contact: pdprATesoDOTorg.
As ESO public webpages are managed by our Department of Communication, your questions will be dealt with the support of the said Department.