Press Release
Towards the Beginnings
The NTT Provides the Deepest Look Into Space
31 May 1991
The ESO New Technology Telescope on La Silla has again proven its extraordinary abilities. Known since two years as the world's best optical telescope [1], it has now produced the "deepest" view into the distant regions of the Universe ever obtained with any ground-or space-based telescope. The new picture shows enormous numbers of extremely faint and remote galaxies whose images almost completely fill the field of view. Expressed in astronomical terms, the picture reaches beyond magnitude 29 [2].
Making the deepest picture
Beginning in March 1991, an international group of astronomers [3] has embarked upon an ambitious observing programme with the NTT aimed at detecting and measuring galaxies so faint and so distant that they were until now beyond the reach of other telescopes.
To ensure that no light from relatively bright objects would outshine that of the very faint objects to be observed, the astronomers decided to point the NTT towards a so-called "empty" sky field in the equatorial constellation of Sextans. Previous observations had shown that no objects brighter than about magnitude 20 were visible in this direction. As will be seen, the first attempt has been highly successful.
Using a high-quality CCD detector in the ESO Multi-Mode Instrument (EMMI), installed at one of the NTT foci, Bruce Peterson took forty-one exposures of this field, totalling 6 hours 50 minutes. The individual pictures were subjected to extensive image processing and then co-added to produce a combined image of which a small part (about 2 % of the total area) is reproduced on the photo accompanying this Press Release.
What the picture shows
It has been known for some time that on very deep sky exposures, most recorded objects fainter than about magnitude 24 are galaxies, enormous systems of stars like the Milky Way Galaxy to which our Sun and its planets belong, rather than individual stars. This is because, as we look further and further out in space, we see more and more galaxies, while there is only a limited number of foreground stars in the Milky Way.
In the accompanying picture, more than 97% of the objects are galaxies. The brightest ones, of about magnitude 21 -25, can clearly be seen to have different shapes and can be accordingly classified. Thanks to the good angular resolution (the sharpness of the images), it is possible to see that some of the fainter images are more or less elongated. This may be due to the galaxy type, elliptical or spiral, or the inclination to the line of sight.
Calibration exposures of objects with known brightness were made with NTT on the same nights, allowing to measure rather accurately the brightness of all objects seen on this picture. It was found that the "limiting magnitude", that is the magnitude of the faintest objects that can be perceived, is fainter than magnitude 29. This is more than one magnitude, i.e. at least 2.5 times, fainter than any other image obtained so far by any optical telescope, on the ground as well as in space. The magnitudes of some of the galaxies are indicated on the attached map for comparison.
The picture shows numerous faint galaxies whose images to a large extent overlap each other. As a matter of fact, it is not even certain that there is any place where we are able to "look through" this "wall" of galaxies. Already this simple observation is of great cosmological significance: the number of galaxies still appears to be increasing at these very faint magnitudes. It seems that we have not yet reached a point where we begin to look through the system of galaxies, as we can look through the stars in the Milky Way system.
The observation of a galaxy of magnitude 29 corresponds to the registration of the glow from a cigar at the distance of the Moon, or, in more earthly terms, of the faint light of a glow-worm in Garching, as seen from La Silla, 12,000 km away. Since each of the galaxies consists of millions, in most cases of billions of stars like our Sun, it is clear that they must be very far out in space for their observed light to become so faint.
A single picture, however, cannot with certainty discern between intrinsically faint, relatively nearby "dwarf" galaxies, very distant "normal" galaxies which are similar to the Milky Way Galaxy, or extremely remote super-luminous galaxies. If some of the faintest images here seen belong to dwarf galaxies like the satellite galaxies of the Milky Way, the Magellanic Clouds, then their redshifts [4] are likely to be 0.5 to 0.7, corresponding to look-back times of 38 -48 %of the age of the Universe (assuming that it is 20,000 million years -a very uncertain figure -this would correspond to a distance of about 10,000 million light-years). Those which are normal galaxies like the Milky Way will have redshifts of the order of 3 -3.5 and the look-back time would be 88 -91 % (and the distance ~ 18,000 million light-years). However, if any of them are brighter than the Milky Way Galaxy, then their distances would be even larger. Some of the objects may even be intrinsically extremely bright quasars at never-before observed look-back times and distances.
Interpretation of the picture
To fully understand the message of this unique picture, laborious follow-up observations are now being undertaken.
First of all, reasonably accurate colours of most of observed galaxies will be measured. With the NTT, this will be possible for those which are brighter than magnitude 28.
The present picture was obtained in yellow light and shows the brightness of the galaxies in this spectral region. A similar picture has already been taken in red light and will allow the astronomers to determine which of the faint objects are blue and which are red. Very young galaxies, including those in the formation stage, are thought to be rather blue because of their content of young and hot stars of blue colour. Older galaxies in which the formation of stars has largely ceased are redder.
These studies may therefore be able to cast some light on the ages of the galaxies observed. The NTT will also be able to obtain spectra of the galaxies brighter than about magnitude 24. This will make possible the measurement of their redshifts, i.e. their velocities and cosmological distances.
The differentiation between some relatively nearby dwarf galaxies and much more distant normal galaxies will also be possible by means of continued observations of the same sky field. Dwarf galaxies at redshift 0.5 would be close enough for individual supernovae, exploding stars at the end of their lives, to be observed in large numbers. Contrarily, supernovae in normal galaxies at redshift 3 or more would be too faint to be observed. A comparison of pictures obtained at different times will tell whether short-lived supernovae are seen or not, and therefore immediately give important information about the nature of the objects seen.
This NTT picture has given us a tantalizing, first glimpse of what can be done with the new and improved observational means which are now at our disposal. It has given us a unique look into regions of the Universe, so remote in space and time that they have never before been explored.
This is the type of work that will be at the frontline of optical observational cosmology during the coming years.
Notes
[1] See for instance Sky & Telescope, Sept. 1989, p. 248 and June 1990, p. 596. eso8903 and eso8904 also discuss the quality of the NTT.
[2] In the astronomical magnitude scale, smaller numbers signify brighter objects. The brightest stars in the sky have magnitudes near 0; the faintest which can be perceived with the unaided eye have magnitude 6. A difference of one magnitude corresponds to a difference in brightness of a factor of 2.5, i.e. a difference of five magnitudes corresponds to a factor of 2.55 =100. A galaxy of magnitude 20 is about 400,000 times fainter than a star of magnitude 6; a galaxy of magnitude 29 is 4000 times fainter than a galaxy of magnitude 20 and 1,600 million times fainter than a star of magnitude 6.
[3] The group includes Bruce Peterson (Mount Stromlo Observatory of the Australian National University, Canberra), Sandro D'Odorico, Massimo Tarenghi and Joseph Wampler (European Southern Observatory), Yuzuru Yoshii (National Astronomical Observatory, Tokyo, Japan) and Joseph Silk (University of California, Berkeley, U.S.A.).
[4] 1n astronomy, the redshift z denotes the fraction by which the lines are shifted towards longer wavelengths in the spectrum of a distant galaxy receding from us with the expansion velocity of the Universe. The observed redshift gives a direct estimate of the apparent recession velocity, which is itself a function (the Hubble relation) of the distance to the object under study. If we denote the present age of the Universe as tH and the time the light we observe from a galaxy was emitted as tg, then a galaxy redshift of Zg ~ 3.35 corresponds to a look-back time of 90 %, i.e. tg ~ 0.1 . tH, and we see the galaxy as it was when the age of the Universe was only one tenth of what it is now.
Contacts
Richard West
ESO EPR Dept
Garching, Germany
Email: information@eso.org
About the Release
Release No.: | eso9105 |
Legacy ID: | PR 05/91 |
Name: | New Technology Telescope, NTT Susi Deep Field |
Type: | Unspecified : Technology : Observatory : Telescope |
Facility: | New Technology Telescope |
Instruments: | EMMI |
Our use of Cookies
We use cookies that are essential for accessing our websites and using our services. We also use cookies to analyse, measure and improve our websites’ performance, to enable content sharing via social media and to display media content hosted on third-party platforms.
ESO Cookies Policy
The European Organisation for Astronomical Research in the Southern Hemisphere (ESO) is the pre-eminent intergovernmental science and technology organisation in astronomy. It carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities for astronomy.
This Cookies Policy is intended to provide clarity by outlining the cookies used on the ESO public websites, their functions, the options you have for controlling them, and the ways you can contact us for additional details.
What are cookies?
Cookies are small pieces of data stored on your device by websites you visit. They serve various purposes, such as remembering login credentials and preferences and enhance your browsing experience.
Categories of cookies we use
Essential cookies (always active): These cookies are strictly necessary for the proper functioning of our website. Without these cookies, the website cannot operate correctly, and certain services, such as logging in or accessing secure areas, may not be available; because they are essential for the website’s operation, they cannot be disabled.
Functional Cookies: These cookies enhance your browsing experience by enabling additional features and personalization, such as remembering your preferences and settings. While not strictly necessary for the website to function, they improve usability and convenience; these cookies are only placed if you provide your consent.
Analytics cookies: These cookies collect information about how visitors interact with our website, such as which pages are visited most often and how users navigate the site. This data helps us improve website performance, optimize content, and enhance the user experience; these cookies are only placed if you provide your consent. We use the following analytics cookies.
Matomo Cookies:
This website uses Matomo (formerly Piwik), an open source software which enables the statistical analysis of website visits. Matomo uses cookies (text files) which are saved on your computer and which allow us to analyze how you use our website. The website user information generated by the cookies will only be saved on the servers of our IT Department. We use this information to analyze www.eso.org visits and to prepare reports on website activities. These data will not be disclosed to third parties.
On behalf of ESO, Matomo will use this information for the purpose of evaluating your use of the website, compiling reports on website activity and providing other services relating to website activity and internet usage.
Matomo cookies settings:
Additional Third-party cookies on ESO websites: some of our pages display content from external providers, e.g. YouTube.
Such third-party services are outside of ESO control and may, at any time, change their terms of service, use of cookies, etc.
YouTube: Some videos on the ESO website are embedded from ESO’s official YouTube channel. We have enabled YouTube’s privacy-enhanced mode, meaning that no cookies are set unless the user actively clicks on the video to play it. Additionally, in this mode, YouTube does not store any personally identifiable cookie data for embedded video playbacks. For more details, please refer to YouTube’s embedding videos information page.
Cookies can also be classified based on the following elements.
Regarding the domain, there are:
- First-party cookies, set by the website you are currently visiting. They are stored by the same domain that you are browsing and are used to enhance your experience on that site;
- Third-party cookies, set by a domain other than the one you are currently visiting.
As for their duration, cookies can be:
- Browser-session cookies, which are deleted when the user closes the browser;
- Stored cookies, which stay on the user's device for a predetermined period of time.
How to manage cookies
Cookie settings: You can modify your cookie choices for the ESO webpages at any time by clicking on the link Cookie settings at the bottom of any page.
In your browser: If you wish to delete cookies or instruct your browser to delete or block cookies by default, please visit the help pages of your browser:
Please be aware that if you delete or decline cookies, certain functionalities of our website may be not be available and your browsing experience may be affected.
You can set most browsers to prevent any cookies being placed on your device, but you may then have to manually adjust some preferences every time you visit a site/page. And some services and functionalities may not work properly at all (e.g. profile logging-in, shop check out).
Updates to the ESO Cookies Policy
The ESO Cookies Policy may be subject to future updates, which will be made available on this page.
Additional information
For any queries related to cookies, please contact: pdprATesoDOTorg.
As ESO public webpages are managed by our Department of Communication, your questions will be dealt with the support of the said Department.