Pressemitteilung

Die tiefgekühlte fliegende Untertasse

ALMA findet unerwartet kalte Staubkörner in planetenbildender Scheibe

3. Februar 2016

Mit den ALMA- und IRAM-Radioteleskopen konnte ein Astronomenteam mit Beteiligung vom Max-Planck-Institut für Astronomie in Heidelberg erstmals die Temperatur großer Staubkörner in den Außenbereichen einer Scheibe um einen jungen Stern messen, in der Planeten entstehen. Mit einer neuen Technik für die Beobachtungen des Objektes mit dem Spitznamen „Die fliegende Untertasse“ fanden sie heraus, dass die Körner deutlich kälter sind als erwartet: –266 Grad Celsius. Dieses überraschende Ergebnis legt nahe, dass Modelle, die solche Scheiben beschreiben sollen, vermutlich überarbeitet werden müssen.

Das internationale Team unter der Leitung von Stephane Guilloteau am Laboratoire d'Astrophysique de Bordeaux in Frankreich maß die Temperatur großer Staubkörner um den jungen Stern 2MASS J16281370-2431391 in der beeindruckenden Rho Ophiuchi-Sternentstehungsregion, die etwa 400 Lichtjahre von der Erde entfernt ist.

Der Stern ist umgeben von einer Scheibe aus Gas und Staub – solche Scheiben werden als protoplanetare Scheiben bezeichnet, da sie eine frühe Phase in der Entstehung von Planetensystemen darstellen. Diese außergewöhnliche Scheibe ist fast vollständig von der Seite zu sehen, weshalb ihre Erscheinung auf Bildern im sichtbaren Licht dazu geführt hat, dass sie den Spitznamen Fliegende Untertasse bekommen hat.

Die Astronomen beobachteten mit ALMA das Leuchten, dass von Kohlenstoffmonoxid-Molekülen in der Scheibe von 2MASS J16281370-2431391 stammt. Sie schafften es, sehr scharfe Bilder zu erstellen und fanden etwas Seltsames – in manchen Fällen beobachteten sie ein "negatives" Signal! Eigentlich ist soetwas physikalisch unmöglich, aber in diesem Fall gibt es eine einfache Erklärung, die zu einer überraschenden Schlussfolgerung führt.

Stephane Guilloteau, der Erstautor des Fachartikels, in dem die Ergebnisse beschrieben werden, erläutert die Zusammenhänge: „Diese Scheibe sehen wir nicht vor dem Hintergrund eines schwarzen und leeren Nachthimmels. Stattdessen sind ihre Umrisse vor dem leuchtenden Rho-Ophiuchi-Nebel zu sehen. Dieses diffuse Leuchten ist räumlich zu weit ausgedehnt, um vom ALMA erfasst zu werden, aber die Scheibe absorbiert es. Das daraus resultierende negative Signal bedeutet, dass Teile der Scheibe kälter als der Hintergrund sind. Die Erde befindet sich buchstäblich im Schatten der fliegenden Untertasse!“

Das Team kombinierte die ALMA-Messungen der Scheibe mit Beobachtungen des Hintergrundleuchtens, die mit dem 30-Meter-IRAM-Teleskop in Spanien durchgeführt wurden [1]. Sie berechneten für die Staubkörner in der Scheibe eine Temperatur von gerade einmal –266 Grad Celsius (nur 7 Grad über dem absoluten Nullpunkt oder 7 Kelvin) in einer Entfernung von etwa 15 Milliarden Kilometer vom Zentralstern [2]. Dabei handelt es sich um die erste direkte Messung der Temperatur großer Staubkörner (mit einer Größe von etwa einem Millimeter) in solchen Objekten.

Diese Temperatur ist deutlich niedriger als die –258 bis –253 Grad Celsius (15 bis 20 Kelvin), die von den meisten derzeitigen Modellen vorhergesagt wird. Um die Diskrepanz zu erklären, müssen die großen Staubkörner andere Eigenschaften besitzen als gegenwärtig angenommen, damit sie in der Lage sind, auf solch niedrige Temperaturen heruntergekühlt zu werden.

„Um die Bedeutung der Entdeckung für die Struktur solcher Scheiben zu verstehen, müssen wir herausfinden, welche plausiblen Staubeigenschaften dazu führen, dass solch niedrige Temperaturen erreicht werden. Wir haben einige Ideen – zum Beispiel, dass die Temperatur von der Größe der Körner abhängen könnte, wobei größere Körner kälter sind als kleinere. Aber es ist noch zu früh, um das genau zu wissen“, fügt Koautor Emmanuel di Folco vom Laboratoire d'Astrophysique de Bordeaux hinzu.

Wenn sich herausstellt, dass niedrige Temperaturen der Körner eine normale Eigenschaft protoplanetarer Scheiben darstellen, könnte das viele Auswirkungen auf unser Verständnis darüber haben, wie sie entstehen und sich entwickeln.

Zum Beispiel würden unterschiedliche Staubeigenschaften einen Einfluss darauf haben, was passiert, wenn diese Teilchen kollidieren und somit auch darauf, inwiefern aus ihnen Planeten entstehen können. Ob die erforderliche Änderung der Staubeigenschaften diesbezüglich bedeutsam ist oder nicht, kann noch nicht abgeschätzt werden.

Niedrigere Staubtemperaturen können auch einen großen Einfluss auf die kleineren staubhaltigen Scheiben haben, deren Existenz bekannt ist. Wenn diese Scheiben weitestgehend aus größeren, aber kälteren Körnern bestehen, als bisher angenommen, würde das bedeuten, dass diese dichten Scheiben beliebig massereich sein können, sodass Riesenplaneten vergleichsweise nah am Zentralstern entstehen könnten.

Zwar sind noch weitere Beobachtungen notwendig, aber es scheint, dass der kältere Staub, der von ALMA entdeckt wurde, einen großen Einfluss auf das Verständnis von protoplanetaren Scheiben hat.

Endnoten

[1] Die IRAM-Messungen waren notwendig, da ALMA selbst nicht empfindlich genug für das räumlich breite Signal aus dem Hintergrund war.

[2] Dies entspricht einhundert Mal der Entfernung zwischen Erde und Sonne. In dieser Region befindet sich heute im Sonnensystem der Kuiper-Gürtel.

Weitere Informationen

Die hier präsentierten Forschungsergebnisse von S. Guilloteau et al. sind unter dem Titel „The shadow of the Flying Saucer: A very low temperature for large dust grains” in der Fachzeitschrift Astronomy & Astrophysics Letters erschienen.

Die beteiligten Wissenschaftler sind S. Guilloteau (University of Bordeaux/CNRS, Floirac, Frankreich), V. Piétu (IRAM, Saint Martin d’Hères, Frankreich), E. Chapillon (University of Bordeaux/CNRS; IRAM), E. Di Folco (University of Bordeaux/CNRS), A. Dutrey (University of Bordeaux/CNRS), T. Henning (Max-Planck-Institut für Astronomie, Heidelberg, [MPIA]), D. Semenov (MPIA), T. Birnstiel (MPIA) and N. Grosso (Observatoire Astronomique de Strasbourg, Frankreich).

Das Atacama Large Millimeter/submillimeter Array (ALMA) ist eine internationale astronomische Einrichtung, die gemeinsam von Europa, Nordamerika und Ostasien in Zusammenarbeit mit der Republik Chile getragen wird. Von europäischer Seite aus wird ALMA über die Europäische Südsternwarte (ESO) finanziert, in Nordamerika von der National Science Foundation (NSF) der USA in Zusammenarbeit mit dem kanadischen National Research Council (NRC) und dem taiwanesischen National Science Council (NSC), und in Ostasien von den japanischen National Institutes of Natural Sciences (NINS) in Kooperation mit der Academia Sinica (AS) in Taiwan. Bei Entwicklung, Aufbau und Betrieb ist die ESO federführend für den europäischen Beitrag, das National Radio Astronomy Observatory (NRAO), das seinerseits von Associated Universities, Inc. (AUI) betrieben wird, für den nordamerikanischen Beitrag und das National Astronomical Observatory of Japan (NAOJ) für den ostasiatischen Beitrag. Dem Joint ALMA Observatory (JAO) obliegt die übergreifende Projektleitung für den Aufbau, die Inbetriebnahme und den Beobachtungsbetrieb von ALMA.

Das Institut de Radio Astronomie Millimétrique (IRAM) wird durch INSU/CNRS (Frankreich), die MPG (Deutschland) und IGN (Spanien) unterstützt.

Die Europäische Südsternwarte (engl. European Southern Observatory, kurz ESO) ist die führende europäische Organisation für astronomische Forschung und das wissenschaftlich produktivste Observatorium der Welt. Getragen wird die Organisation durch 16 Länder: Belgien, Brasilien, Dänemark, Deutschland, Finnland, Frankreich, Großbritannien, Italien, die Niederlande, Österreich, Polen, Portugal, Spanien, Schweden, die Schweiz und die Tschechische Republik. Die ESO ermöglicht astronomische Spitzenforschung, indem sie leistungsfähige bodengebundene Teleskope entwirft, konstruiert und betreibt. Auch bei der Förderung internationaler Zusammenarbeit auf dem Gebiet der Astronomie spielt die Organisation eine maßgebliche Rolle. Die ESO verfügt über drei weltweit einzigartige Beobachtungsstandorte in Chile: La Silla, Paranal und Chajnantor. Auf dem Paranal betreibt die ESO mit dem Very Large Telescope (VLT) das weltweit leistungsfähigste Observatorium für Beobachtungen im Bereich des sichtbaren Lichts und zwei Teleskope für Himmelsdurchmusterungen: VISTA, das größte Durchmusterungsteleskop der Welt, arbeitet im Infraroten, während das VLT Survey Telescope (VST) für Himmelsdurchmusterungen ausschließlich im sichtbaren Licht konzipiert ist. Die ESO ist einer der Hauptpartner bei ALMA, dem größten astronomischen Projekt überhaupt. Auf dem Cerro Armazones unweit des Paranal errichtet die ESO zur Zeit das European Extremely Large Telescope (E-ELT) mit 39 Metern Durchmesser, das einmal das größte optische Teleskop der Welt werden wird.

Die Übersetzungen von englischsprachigen ESO-Pressemitteilungen sind ein Service des ESO Science Outreach Network (ESON), eines internationalen Netzwerks für astronomische Öffentlichkeitsarbeit, in dem Wissenschaftler und Wissenschaftskommunikatoren aus allen ESO-Mitgliedsländern (und einigen weiteren Staaten) vertreten sind. Deutscher Knoten des Netzwerks ist das Haus der Astronomie in Heidelberg.

Links

Kontaktinformationen

Stephane Guilloteau
Laboratoire d'Astrophysique de Bordeaux
Floirac, France
E-Mail: stephane.guilloteau@u-bordeaux.fr

Emmanuel di Folco
Laboratoire d'Astrophysique de Bordeaux
Floirac, France
E-Mail: emmanuel.di-folco@u-bordeaux.fr

Vincent Pietu
IRAM
Grenoble, France
E-Mail: pietu@iram.fr

Richard Hook
ESO Public Information Officer
Garching bei München, Germany
Tel: +49 89 3200 6655
Mobil: +49 151 1537 3591
E-Mail: rhook@eso.org

Rodrigo Alvarez (Pressekontakt Belgien)
ESO Science Outreach Network und Planetarium, Royal Observatory of Belgium
Tel: +32-2-474 70 50
E-Mail: eson-belgium@eso.org

Connect with ESO on social media

Dies ist eine Übersetzung der ESO-Pressemitteilung eso1604.

Über die Pressemitteilung

Pressemitteilung Nr.:eso1604de-be
Name:2MASS J16281370-2431391
Typ:Milky Way : Star : Circumstellar Material : Disk : Protoplanetary
Facility:Atacama Large Millimeter/submillimeter Array
Science data:2016A&A...586L...1G

Bilder

Die protoplanetare Scheibe mit dem Spitznamen „Fliegende Untertasse“ um 2MASS J16281370-2431391
Die protoplanetare Scheibe mit dem Spitznamen „Fliegende Untertasse“ um 2MASS J16281370-2431391
Die protoplanetare Scheibe mit dem Spitznamen „Fliegende Untertasse“ um 2MASS J16281370-2431391
Die protoplanetare Scheibe mit dem Spitznamen „Fliegende Untertasse“ um 2MASS J16281370-2431391
Die Rho Ophiuchi-Sternentstehungsregion im Sternbild Schlangenträger
Die Rho Ophiuchi-Sternentstehungsregion im Sternbild Schlangenträger
Die Rho Ophiuchi-Sternentstehungsregion im Sternbild Schlangenträger
Die Rho Ophiuchi-Sternentstehungsregion im Sternbild Schlangenträger

Videos

Zoom auf die protoplanetare Scheibe mit dem Spitznamen „Fliegende Untertasse“
Zoom auf die protoplanetare Scheibe mit dem Spitznamen „Fliegende Untertasse“