Pressemitteilung

No "Missing Mass" in Opaque Spiral Galaxies?

27. September 1990

A long-term astronomical study of spiral galaxies, initiated almost a decade ago at the European Southern Observatory, has recently produced intriguing results about the presence of cold matter in the Universe. They have a direct bearing on the so-called "missing mass" problem, one of the major unsolved riddles in astronomy.

The ESO Atlas

In 1972, ESO embarked on the production of the first modern, photographic atlas of the southern sky. More than 1200 large, blue-sensitive photographic plates were obtained with the 1-m ESO Schmidt telescope on La Silla; the 606 best of these formed the basis for the "ESO Quick Blue Atlas of the Southern Sky" which was ready in 1980. This Atlas showed celestial objects up to 100 times fainter than recorded in earlier southern atlasses and, not unexpectedly, many new and interesting discoveries were made on it.

A comprehensive catalogue of more than 16,000 bright galaxies, stellar clusters and galactic nebulae was compiled by Swedish astronomer Andris Lauberts as a result of a careful, visual inspection of the Atlas photographs. It was published by ESO in 1982 and included the first systematic classification by type (elliptical, spiral, irregular) of southern galaxies.

Accurate measurements of 15,000 southern galaxies

In 1982, Andris Lauberts and the Dutch astronomer Edwin Valentijn embarked upon an even more ambitious project. With a fast, high-precision microphotometer at the ESO Headquarters in Garching, they scanned the images of 15,467 galaxies in this Catalogue, first on the blue-sensitive Atlas plates, and then on red-sensitive plates, also obtained with the ESO Schmidt telescope. In this way, the photographic images were registered as arrays of numbers which could be stored in a computer. In the end the immense database comprised more than 4 Gigabytes. It has been stored on optical disks, making it possible to display the blue and red images of all of these galaxies instantaneously, a very efficient tool for many astronomical investigations.

By means of sophisticated computer programmes, each galaxy was automatically analyzed and classified according to type, brightness, colour, size, the angle from which it is viewed, etc. In all, each galaxy was characterized by about 200 different parameters.

Opaque spiral galaxies

New and exciting results have now been obtained by Edwin Valentijn, following an extremely detailed computer analysis of 9,381 southern spiral galaxies, identified as such in the above mentioned database.

His investigation began with a comprehensive study of the surface brightness of these galaxies (that is, the way the brightness varies over the galaxies' surface) in relation to the angle under which they are seen (spiral galaxies seen face-on ressemble pinwheels, while they look like compass needles when they are seen from the side). The dependance of the surface brightness on the viewing angle, statistically spoken, makes it possible to estimate the opaqueness of these galaxies, that is how strongly light passing through them is absorbed.

To his great surprise, and contrary to the conventional view that spiral galaxies are rather transparent, Valentijn found that these galaxies are quite opaque and therefore contain many more clouds of interstellar matter than thought before, also in their outer regions. Like the dimly visible headlights of cars on a foggy morning, the light from many of the stars within these galaxies barely penetrates these clouds.

Most important, a comparison with infrared measurements from the IRAS satellite indicates that this matter must be very cold; the temperature is less than 20 degrees above the absolute zero (T < 20 K). It is most likely to consist of molecular clouds, such as those known since some time in our own galaxy, the Milky Way.

The clouds are too cold and dark to be seen directly, but from our own galaxy it is known that much of the mass of molecular clouds is made up of molecular hydrogen gas, H2, which is extremely difficult to observe.

The missing mass?

The mass of a spiral galaxy can be determined by accurate measurements of the motions of its stars and atomic hydrogen gas (H I); this is done by means of optical and radio doppler spectroscopy. The more rapid the motions are, the heavier is the spiral galaxy. Previously, in virtually all cases the mass of a galaxy determined this way, has been found to be significantly larger than the combined mass of all the stars and interstellar matter actually visible within the confines of that galaxy. Thus, a large fraction of the mass must be "invisible" - this is known as the problem of the "missing mass".

There have been many attempts to explain this. Some scientists believe that galaxies may have large haloes of hot gas, not visible with present astronomical instruments. Others have invoked the presence of large numbers of exotic elementary particles, including neutrinoes, or massive "cosmic strings".

However, if the spiral galaxies contain many more interstellar, molecular clouds than detected before, then perhaps the mass of these clouds makes up for the "missing" amount?

To look into this, Valentijn and the Spanish astronomer Ignacio González-Serrano have studied half a dozen of the most "mass-missing" spiral galaxies, for which extensive doppler spectroscopy has been made. In all cases, the astronomers find that the mass of the molecular clouds inferred from the opaqueness corresponds exactly to the amount that was "missing". Thus, for these "classical missing-mass" galaxies at least, there is no longer any need to invoke the presence of any exotic "missing mass".

This, of course, does not mean that the "missing mass" problem has now been definitively solved. More observations are needed to provide more knowledge about the molecular clouds in these spiral galaxies, in particular difficult measurements of the radio emission from some of the other molecules expected to be present in the clouds, for instance carbon monoxide (CO). It is important, however, that Valentijn's findings offer a natural explanation of the "missing mass", which is in agreement with all available observations and which would eliminate the need for additional, exotic ingredients.

There is also "missing mass" in elliptical galaxies and in clusters of galaxies, but such objects were not included in the present study.

The Milky Way

Our own galaxy, the Milky Way, is a typical spiral galaxy, so how opaque is it, and what about the "missing mass" thought to exist here in our immediate neighbourhood?

Hoping to cast new light also on this problem, Edwin Valentijn again turned to the computerized database. He noted that about 60,000 additional, faint galaxies, situated much further out in space, are seen in almost the same direction as the nearly 16,000 galaxies for which computerized images are available. Counts of the nearby as well as of the more distant galaxies revealed that there are 60% more of these objects "above" the Milky Way plane (in the Northern Galactic Hemisphere) than in the opposite direction.

There are two possible explanations for this phenomenon. In the first case the distribution in space of these galaxies is not uniform, but this would require that the Universe is non-uniform on a scale of 1000 - 2000 million lightyears which is not very probable according to current cosmological research.

The more likely explanation is that it reflects the position of our Sun in the Milky Way, which has been shown by accurate measurements to be about 40 lightyears above ("North" of) the galactic plane. Indeed, if our Milky Way were as opaque as the spiral galaxies of the same class in the computer database were found to be, then the interstellar absorption in the Milky Way should be significantly larger towards the South (looking through the central plane where most of the absorbing material is) than towards the North (looking through less absorbing regions, high above the plane). Hence more galaxies would be seen in the North than in the South.

In summary, the discovery that spiral galaxies are more opaque than thought before may therefore also apply to our own Galaxy. Again more observations, particularly in the southern hemisphere (for instance with the SEST telescope on La Silla) will be needed to clarify the situation.

Note that, as in the spiral galaxies in the study, the presence of cold and opaque molecular clouds near the galactic plane would not show up in conventional studies of interstellar absorption which rely on the reddening of starlight. This is because these opaque clouds simply block all light from objects located behind them.

Weitere Informationen

A preliminary account by Valentijn of the opaqueness of spiral galaxies has just appeared in the science journal Nature (346, p.153). More detailed accounts, also including a discussion about the”missing mass'' will appear in papers being published in the Proceedings of IAU Symposium 144 (Kluwer, Dordrecht) and (with Ignacio González-Serrano) in the European journal Astronomy and Astrophysics.

Kontaktinformationen

Richard West
ESO
Garching, Germany
Tel: +49 89 3200 6276
E-Mail: information@eso.org

Connect with ESO on social media

Über die Pressemitteilung

Pressemitteilung Nr.:eso9010
Legacy ID:PR 07/90
Name:NGC 5236
Typ:Local Universe : Galaxy : Type : Spiral
Facility:ESO 1-metre Schmidt telescope

Bilder

Southern spiral galaxy NGC 5236
Southern spiral galaxy NGC 5236

Schicken Sie uns Ihre Kommentare!
Abonnieren Sie Nachrichten der ESO in Ihrer Sprache
Beschleunigt durch CDN77
Allgemeine Geschäftsbedingungen
Cookie Settings and Policy

Our use of Cookies

We use cookies that are essential for accessing our websites and using our services. We also use cookies to analyse, measure and improve our websites’ performance, to enable content sharing via social media and to display media content hosted on third-party platforms.

You can read manage your cookie preferences and find out more by visiting 'Cookie Settings and Policy'.

ESO Cookies Policy


The European Organisation for Astronomical Research in the Southern Hemisphere (ESO) is the pre-eminent intergovernmental science and technology organisation in astronomy. It carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities for astronomy.

This Cookies Policy is intended to provide clarity by outlining the cookies used on the ESO public websites, their functions, the options you have for controlling them, and the ways you can contact us for additional details.

What are cookies?

Cookies are small pieces of data stored on your device by websites you visit. They serve various purposes, such as remembering login credentials and preferences and enhance your browsing experience.

Categories of cookies we use

Essential cookies (always active): These cookies are strictly necessary for the proper functioning of our website. Without these cookies, the website cannot operate correctly, and certain services, such as logging in or accessing secure areas, may not be available; because they are essential for the website’s operation, they cannot be disabled.

Cookie ID/Name
Description/Purpose
Provider (1st party or 3rd party)
Browser session cookie or Stored cookie?
Duration
csrftoken
XSRF protection token. We use this cookie to protect against cross-site request forgery attacks.
1st party
Stored
1 year
user_privacy
Your privacy choices. We use this cookie to save your privacy preferences.
1st party
Stored
6 months
_grecaptcha
We use reCAPTCHA to protect our forms against spam and abuse. reCAPTCHA sets a necessary cookie when executed for the purpose of providing its risk analysis. We use www.recaptcha.net instead of www.google.com in order to avoid unnecessary cookies from Google.
3rd party
Stored
6 months

Functional Cookies: These cookies enhance your browsing experience by enabling additional features and personalization, such as remembering your preferences and settings. While not strictly necessary for the website to function, they improve usability and convenience; these cookies are only placed if you provide your consent.

Cookie ID/Name
Description/Purpose
Provider (1st party or 3rd party)
Browser session cookie or Stored cookie?
Duration
Settings
preferred_language
Language settings. We use this cookie to remember your preferred language settings.
1st party
Stored
1 year
ON | OFF
sessionid
ESO Shop. We use this cookie to store your session information on the ESO Shop. This is just an identifier which is used on the server in order to allow you to purchase items in our shop.
1st party
Stored
2 weeks
ON | OFF

Analytics cookies: These cookies collect information about how visitors interact with our website, such as which pages are visited most often and how users navigate the site. This data helps us improve website performance, optimize content, and enhance the user experience; these cookies are only placed if you provide your consent. We use the following analytics cookies.

Matomo Cookies:

This website uses Matomo (formerly Piwik), an open source software which enables the statistical analysis of website visits. Matomo uses cookies (text files) which are saved on your computer and which allow us to analyze how you use our website. The website user information generated by the cookies will only be saved on the servers of our IT Department. We use this information to analyze www.eso.org visits and to prepare reports on website activities. These data will not be disclosed to third parties.

On behalf of ESO, Matomo will use this information for the purpose of evaluating your use of the website, compiling reports on website activity and providing other services relating to website activity and internet usage.

ON | OFF

Matomo cookies settings:

Cookie ID/Name
Description/Purpose
Provider (1st party or 3rd party)
Browser session cookie or Stored cookie?
Duration
Settings
_pk_id
Stores a unique visitor ID.
1st party
Stored
13 months
_pk_ses
Session cookie temporarily stores data for the visit.
1st party
Stored
30 minutes
_pk_ref
Stores attribution information (the referrer that brought the visitor to the website).
1st party
Stored
6 months
_pk_testcookie
Temporary cookie to check if a visitor’s browser supports cookies (set in Internet Explorer only).
1st party
Stored
Temporary cookie that expires almost immediately after being set.

Additional Third-party cookies on ESO websites: some of our pages display content from external providers, e.g. YouTube.

Such third-party services are outside of ESO control and may, at any time, change their terms of service, use of cookies, etc.

YouTube: Some videos on the ESO website are embedded from ESO’s official YouTube channel. We have enabled YouTube’s privacy-enhanced mode, meaning that no cookies are set unless the user actively clicks on the video to play it. Additionally, in this mode, YouTube does not store any personally identifiable cookie data for embedded video playbacks. For more details, please refer to YouTube’s embedding videos information page.

Cookies can also be classified based on the following elements.

Regarding the domain, there are:

As for their duration, cookies can be:

How to manage cookies

Cookie settings: You can modify your cookie choices for the ESO webpages at any time by clicking on the link Cookie settings at the bottom of any page.

In your browser: If you wish to delete cookies or instruct your browser to delete or block cookies by default, please visit the help pages of your browser:

Please be aware that if you delete or decline cookies, certain functionalities of our website may be not be available and your browsing experience may be affected.

You can set most browsers to prevent any cookies being placed on your device, but you may then have to manually adjust some preferences every time you visit a site/page. And some services and functionalities may not work properly at all (e.g. profile logging-in, shop check out).

Updates to the ESO Cookies Policy

The ESO Cookies Policy may be subject to future updates, which will be made available on this page.

Additional information

For any queries related to cookies, please contact: pdprATesoDOTorg.

As ESO public webpages are managed by our Department of Communication, your questions will be dealt with the support of the said Department.